Lecture 22

125

Computer Programming |l

Adam Blank Spring 2015

More Tree Methods
Introducing BSTs

BST Methods

height Solution p)

public int height() {
return height(this.root);

}

// A null tree has height 0

1
2
3
4
5 private int height(IntTreeNode current) {
6
7 if (current == null) {

8

return 0;
9 }
10 else {
11 // Find the largest path by taking the max
12 // of both branches recursively (and adding 1 for this node)
13 return 1 + Math.max(
14 height(current.left),
15 height(current.right)
16)i
17 }
18 }

CSE 143: Computer Programming I/

Binary Search Trees
(BSTs)

Another Tree Method

height

Write a tree method called height (inside the IntTree class) with the
following method signature:

public int height()

that returns the number of nodes on the longest path from the root to
any leaf. For example,
root

root

Iy

root e
height is 1 height is 5 height is 3

Back to contains

Recall contains ()

1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }

4

5 /* If current xis* value, we found it! =/

6 else if (current.data == value) { return true; }

7

8 else {

9 return contains(current.left, value) ||

10 contains(current.right, value);

11 }

Runtime of contains(7)

Consider the following tree: Which nodes do we visit for contains(7)

That makes the code O(n). Can we do better?

Doing Better!

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))

A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
m All data "to the left of " a node is less than it
m All data "to the right of " a node is greater than it
m All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

root

root root @
(0]

NO YES N

contains (AGAIN!)

Write contains () for a BST
Fix contains so that it takes advantage of the BST properties.

Recall contains ()

private boolean contains(IntTreeNode current, int value) {
/* If the tree is null, it definitely doesn’t contain value... */
if (current == null) { return false; }

1

2

3

4

5 /* If current xisx value, we found it! */

6 else if (current.data == value) { return true; }
7
8

else if (current.data < value) {

9 return contains(current.right, value);
10 }

11 else {

12 return contains(current.left, value);
13 }

14 }

g to a BST!

add
Write a method add in the BST class with the following signature:

public void add(int value);

that preserves the BST property.

Example (tree.add(49))

Before

Checking isBST 5

isBST
Write a function isBST with the following signature:

private boolean isBST(IntTreeNode current, int min, int
max)

that returns true if the tree at root current is a BST.

1 private boolean isBST(IntTreeNode current, int min, int max) {
2 if (current == null) {

3 return true;

4

5 else if (current.data < min || current.data > max) {
6 return false;

7 }

8 else if (!isBST(current.left, min, current.data)) {
9 return false;

10 }

11 else {

12 return isBST(current.right, current.data, max);
13 }

Tracing the new contains 7

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)

That makes the code logn. Much better!

WARNING!

Consider the following tree:

This is the same tree, but now we have to visit all the nodes!

g to a BST (Attempt #1) 9

Attempt #1
public void add(int value) {
add(this.root, value);

1

2

3

4 private void add(IntTreeNode current, int value) {
5 if (current == null) {

6 current = new IntTreeNode(value);

7
8

}

else if (current.data > value) {
9 add(current.left, value);
10 }
11 else if (current.data < value) {
12 add(current.right, value);
13 }

14 }

What's wrong with this solution?

Just like with LinkedLists where we must change front or .next,
we're not actually changing anything here. We're discarding the result.

x = change(x)

A WN R

Consider the following code:

public static void main(String[] args) {
String s = "hello world";
s.toUpperCase();
System.out.println(s);

}

OUTPUT

>> hello world

public static void main(String[] args) {
String s = "hello world";
S = s.toUpperCase();
System.out.println(s);

OUTPUT

>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 11

If you want to write a method that can change the object that a variable
refers to, you must do three things:

Pass in the original state of the object to the method
Return the new (possibly changed) object from the method
Re-assign the caller's variable to store the returned result

1 p = change(p); // in main

2 public static Point change(Point thePoint) {
3 thePoint = new Point(99, -1);

4 return thePoint;

5

Adding to a BST (Fixed)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

Fixed Attempt
public void add(int value) {
this.root = add(this.root, value);
}
private IntTreeNode add(IntTreeNode current, int value) {
if (current == null) {
current = new IntTreeNode(value);
}
else if (current.data > value) {
current.left = add(current.left, value);
}
else if (current.data < value) {
current.right = add(current.right, value);
}
return current;
}

This works because we always update the result, always return the
result, and always update the root.

m BSTs can make searching/inserting/etc. much faster.
m Make sure that you can figure out if a tree is a BST or not.

m Whenever you are writing a BST method, you must use the x =
change (x) pattern. It won't work otherwise.

