
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1-8.3

self-checks: Ch. 8 #1-9

exercises: Ch. 8 #1-4

Copyright 2008 by Pearson Education
2

Problem
 Declaring same group of related variables several times in

a program

int x1 = 3;

int y1 = 5;

int x2 = 12;

int y2 = 4;

 Annoying and redundant

 Unclear and hard to keep track of variables

Copyright 2008 by Pearson Education
3

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class <object name> {

<field(s)>;

}

 Syntax to use this data structure:

<object> <variable> = new <object>();

Copyright 2008 by Pearson Education
4

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class Point {

int x;

int y;

}

 Syntax to use this data structure:

Point p1 = new Point();

Copyright 2008 by Pearson Education
5

Two Uses for Java Classes

class: A program entity that represents
either:

1. A program / module, or

2. A template for a new type of objects.

 The DrawingPanel class is a template for
creating DrawingPanel objects.

object: An entity that combines state and
behavior

Copyright 2008 by Pearson Education
6

Java class: Program
 An executable program with a main method

 Can be run; statements execute procedurally

 What we’ve been writing all quarter

public class BMI2 {

public static void main(String[] args) {

giveIntro();

Scanner console = new Scanner(System.in);

double bmi1 = getBMI(console);

double bmi2 = getBMI(console);

reportResults(bmi1, bmi2);

}

...

}

Copyright 2008 by Pearson Education
7

Java class: Object Definition
 A blueprint for a new data type

 Not executable, not a complete program

 Created objects are an instance of the class

 Blueprint:
public class Point {

int x;

int y;

}

 Instance:

Point p1 = new Point();

Copyright 2008 by Pearson Education
8

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = “Octopus’s Garden"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = “Lovely Rita"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = “For No One"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

create
s

Copyright 2008 by Pearson Education
9

Abstraction

 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
10

Client and Object Classes
 client program: A program that uses objects.

 Example: HW6 Names is a client of DrawingPanel and
Graphics.

 object: An entity that combines state and behavior

 state: data fields

 behavior: methods

Copyright 2008 by Pearson Education
11

The Object Concept
 procedural programming: Programs that perform their

behavior as a series of steps to be carried out

 object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects

 Takes practice to understand the object concept

Copyright 2008 by Pearson Education
12

Fields

 field: A variable inside an object that is part of its
state.

 Each object has its own copy of each field.

 Clients can access/modify an object's fields

 access: <variable>.<field>

 modify: <variable>.<field> = <value>;

 Example:
Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2008 by Pearson Education
13

Behavior
 Objects can tie related data and behavior together

 instance method: A method inside an object that
operates on that object
public <type> <name> (<parameter(s)>) {

<statement(s)>;
}

 Syntax to use method:

<variable>.<method>(<parameter(s)>);

 Example:

p1.translate(11, 6);

Copyright 2008 by Pearson Education
14

Implicit Parameter

 Each instance method call happens on a
particular object.
 Example: p1.translate(11, 6);

 The code for an instance method has an
implied knowledge of what object it is
operating on.

 implicit parameter: The object on which an
instance method is called.

 Can be referred to inside the object using this
keyword

Copyright 2008 by Pearson Education
15

Accessors

 accessor: An instance method that provides
information about the state of an object.

 Example:
public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);

}

 This gives clients "read-only" access to the
object's fields.

Copyright 2008 by Pearson Education
16

Mutators

mutator: An instance method that modifies
the object’s internal state.

 Example:
public void translate(int dx, int dy) {

x += dx;
y += dy;

}

 This gives clients both read and write access
to code.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Constructors and Encapsulation

reading: 8.4 - 8.5

self-checks: #10-17

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
2

Object initialization:
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
3

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

 We are able to this with most types of objects in Java.

Copyright 2008 by Pearson Education
4

Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 does not specify a return type;

it implicitly returns the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
5

Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

Copyright 2008 by Pearson Education
6

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1

Copyright 2008 by Pearson Education
7

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2008 by Pearson Education
8

Common constructor bugs
 Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is not a constructor at all, but a method!

 Storing into local variables instead of fields ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

Copyright 2008 by Pearson Education
9

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

Copyright 2008 by Pearson Education

10

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
11

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
12

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
13

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
14

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
15

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
16

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: toString, this

reading: 8.6 - 8.7

self-checks: #13-18, 20-21

exercises: #5, 9, 14

Copyright 2008 by Pearson Education
2

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
3

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);

System.out.println("p: " + p); // p: Point@9e8c34

 We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")");

 We'd like to be able to print the object itself:

// desired behavior

System.out.println("p: " + p); // p: (10, 7)

Copyright 2008 by Pearson Education
4

The toString method

 tells Java how to convert an object into a String

 called when an object is printed/concatenated to a String:

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

 If you prefer, you can write .toString() explicitly.

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a suitable String;

}

 The method name, return, parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

Copyright 2008 by Pearson Education
6

Client code
// This client program uses the Point class.

public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print each point's distance from the origin

System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again

p1.translate(11, 6);

p2.translate(1, 7);

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print distance from p1 to p2

System.out.println("distance from p1 to p2: " + p1.distance(p2));

}

}

Copyright 2008 by Pearson Education
7

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
8

this

 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Syntax for using this:

 To refer to a field:

this.field

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

Copyright 2008 by Pearson Education
9

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

public class Point {

private int x;

private int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
10

Variable shadowing
 An instance method parameter can have the same name as

one of the object's fields:

// this is legal

public void setLocation(int x, int y) {

...

}

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
11

Avoiding shadowing w/ this
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
12

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {

private int x;

private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

...

}

Copyright 2008 by Pearson Education
13

Constructors and this

 One constructor can call another using this:

public class Point {

private int x;

private int y;

public Point() {

this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

