Building Java Programs

Chapter 8
Lecture 8-1: Classes and Objects

reading: 8.1-8.3
self-checks: Ch. 8 #1-9
exercises: Ch. 8 #1-4

~ Copyright 2008 by Pearson Education

 —
Problem

» Declaring same group of related variables several times in

a program
Enla s e f e
Varsgdle

TR E e =i
aNaEE P i

* Annoying and redundant
» Unclear and hard to keep track of variables

Copyright 2008 by Pearson Education

——

Solution: Objects

e Group together related variables into an object

» Like creating your own data structure out of Java building
blocks

public class <object name> |
<field(s)>;

* Syntax to use this data structure:
<object> <variable> = new <object> ();

Copyright 2008 by Pearson Education

———

Solution: Objects

e Group together related variables into an object

» Like creating your own data structure out of Java building
blocks

P S e e R M Y o il
1Nt X
int y;

}

e Syntax to use this data structure:
Point pl = new Point();

Copyright 2008 by Pearson Education

e

Two Uses for Java Classes

eclass: A program entity that represents
either:

1. A program / module, or
2. A template for a new type of objects.

» The DrawingPanel class is a template for
creating DrawingPanel objects.

* object: An entity that combines state and
behavior

Copyright 2008 by Pearson Education

Java class: Program

* An executable program with a main method
» Can be run; statements execute procedurally
» What we’ve been writing all quarter

public class BMIZ2 {
public static void main(String[] args) ({
giiivelntrol);
Scanner console = new Scanner (System.in);
double bmil = getBMI (console);
double bmi2 = getBMI (console);
reportResults (bmil, bmi2) ;

Copyright 2008 by Pearson Education

,/

= : i e
Java class: Object Definition

* A blueprint for a new data type
» Not executable, not a complete program
* Created objects are an instance of the class

» Blueprint:

el PO
int x:
int y;

}

e Instance:

Point pl = new Point();

= 7
ks Copyright 2008 by Pearson Education

Blueprint analogy

state:
current song
volume
battery life

behavior:
power on/off

change volume

change station/song

choose random song

siPod blueprint

«iPod #1

sState:

song = “Octopus’s Garden"
volume = 17

battery life = 2.5 hrs |

sbehavior:

power on/off
change station/song
change volume
choose random song

Copyright 2008 by Pearson Education

«iPod #2

sState:
song = “Lovely Rita"
volume = 9
battery life = 3.41 hrs

=behavior:
power on/off
change station/song
change volume

nCreate

choose random song

=iPod #3

sState:
song = “For No One
volume = 24
battery life = 1.8 hrs

=behavior:
power on/off
change station/song
change volume
choose random song

__ Copyright 2008 by Pearson Education

B O

Abstraction

* abstraction: A distancing between ideas and details.
» We can use objects without knowing how they work.

e abstraction in an iPod:

» You understand its external behavior (buttons, screen).
* You don't understand its inner details, and you don't need to.

Y]

| S
Y

Lem
T [R8I
‘ 1%
*)
-) :
<’l’ s quo _
q! i3 ZN3394

I
10 AMP
/ m !
- Add Me aSUge" Ta

Registor Voltage
Here Here

oo

Client and Object Classes

» client program: A program that uses objects.

« Example: HW6 Names is a client of DrawingPanel and
LB e

*» object: An entity that combines state and behavior
» state: data fields
» behavior: methods

Copyright 2008 by Pearson Education

e

The Object Concept

* procedural programming: Programs that perform their
behavior as a series of steps to be carried out

 object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects

» Takes practice to understand the object concept

— 11
Copyright 2008 by Pearson Education

—

Fields

* field: A variable inside an object that is part of its
state.

» Each object has its own copy of each field.

* Clients can access/modify an object's fields

e access: <variable> . <field>
» modify: <variable>.<field> = <value>;

* Example:

Point pl = new Point();
Point p2 = new Point();
i e A e // access
p2.y = 13; // modify

Copyright 2008 by Pearson Education

Behavior
* Objects can tie related data and behavior together

* instance method: A method inside an object that
operates on that object

public <type> <name> (<parameter(s)>) {
<statement(s)>;
}

e Syntax to use method:
<variable> . <method>(<parameter(s)>);

e Example:
pl.translate (11, 6);

Copyright 2008 by Pearson Education

—

Implicit Parameter

» Each instance method call happens on a

particular object.
e Example: pl.translate (11, 6);

» The code for an instance method has an
implied knowledge of what object it is
operating on.

 implicit parameter: The object on which an
instance method is called.

» Can be referred to inside the object using tnis
keyword

14
Copyright 2008 by Pearson Education

AcCcCessors

e accessor: An instance method that provides
information about the state of an object.

* Example:

YR e h e e e e e B e O S e s
@ o el aEil e et A

}

* This gives clients "read-only" access to the
object's fields.

i 15
Copyright 2008 by Pearson Education

Mutators

 mutator: An instance method that modifies
the object’s internal state.

* Example:
publicvvordibranslagteltint vdxy antvdy)
X += dx;
e A
}

* This gives clients both read and write access
to code.

= 16
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Constructors and Encapsulation

reading: 8.4 - 8.5
self-checks: #10-17
exercises: #9, 11, 14, 16

~ Copyright 2008 by Pearson Education

Object initialization:
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

% 4,;,,,4¢/f’i:~——
Initializing objects

e Currently it takes 3 lines to create a pPoint and initialize it:

e e (O
P =
P.Y = 8; // tedious

» We'd rather pass the fields' initial values as parameters:
Point p = new Point (3, 8); // better!

» We are able to this with most types of objects in Java.

3
Copyright 2008 by Pearson Education

Constructors

e constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

» runs when the client uses the new keyword

» does not specify a return type;
it implicitly returns the new object being created

» If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to O.

Copyright 2008 by Pearson Education

7 B O
Constructor example

publicvclagss "Pointiy
T eaiaess
A

// Constructs a Point at the given x/y location.
public Point (int initialX, int initialY) {
initialX;

initialY;

b
y:
}
publilcvvordivbEranslhatetint vdxant adoay
R il
Vot —dye

__ Copyright 2008 by Pearson Education

7 ";gff%/ffiiz——
Tracing a constructor call

* What happens when the following call is made?

Poinbt ply = howr Pornbitlh ;7205

pr(¥ =« | ° Y

publicy Peointfint ani g X e e g ey
X initialX;
Y S el By R T BN

}

shlepbE et e e s s e b e e b
S =il
e

— 6
Copyright 2008 by Pearson Education

B O
Client code, version 3

pub e el a s S PoTn b Ma 3w
e B eHli W itot s D i b e I & Leake A 1 o e A Te PR e s i e e e
// create two Point objects
Point pl = new Point (5, 2);
Point p2 = new Point (4, 3);

// print each point
Svetem-out printintipls it Frplox sl gy
SystemvoutiprinElin (M p 2 e i plse e oy e

// move p2 and then print it again
pZiabranslabet 2oy

SRR H Ny b kb e e e U M e s R R e T S i s s P e
}
i
OUTPUT:
)
pz2: (4, 3)
p2: (6, 7)

__ Copyright 2008 by Pearson Education

 —
Common constructor bugs

» Accidentally writing a return type such as void:

vublzc void Porantilint “anytialX, “ant anybaal Yy o
RA s o o B G A
D @ 0 e o B U

X
e
}

» This is not a constructor at all, but a method!

» Storing into local variables instead of fields ("shadowing"):
Syt ol i e i o b w s e e Y A o M IR MR S el i e A MR A
i o1y it T oGy
int vy P e A

}

» This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

- 8
Copyright 2008 by Pearson Education

, 4/;¢¢¢¢¢f’i:/——
Multiple constructors

* A class can have multiple constructors.
« Each one must accept a unique set of parameters.

e Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).
oubY e et e b e b

X

i 0

=0 9
s Copyright 2008 by Pearson Education

Encapsulation

reading: 8.5 - 8.6
self-check: #13-17
exercises: #5

- =10

~ Copyright 2008 by Pearson Education

Encapsulation

* encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)
» Encapsulation protects the integrity of an object's data.

-
Lo
.0 : R4 4 o3
, . 100 827K
L I
. Qo
Q <R ST LT

40310 it
/ Aubi OUTPUT
Add Measure=jm

Registor voltage .82
Here Here

__ Copyright 2008 by Pearson Education

it

Private fields

» A field can be declared private.
» No code outside the class can access or change it.

private type name;

» Examples:

private int 1id;
private String name;

* Client code sees an error when accessing private fields:

PointMain.java:11l: x has private access in Point

System.out.println("pl is (" + pl.x + ", " + pl.y + ")");

A

Copyright 2008 by Pearson Education

i

B O
Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

publacvint igetX i
el S,

}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newX;

e Client code will look more like this:

SviSEemsouyprintlntipleativeglagetXotyabattaettv el gat Yy s
pl.setX(14);

3 13

e

~ Copyright 2008 by Pearson Education

B O
Point class, version 4

// A Point object represents an (x, y) location.
public class Point {

private int x;

private int y;

S B e g B B B N S R S S W A

b ity M R e o b
N ot i £t oo A
}
N o ST R B S YR M e o D NS s S v)

o A P A P e Y BT (e S T A
}

public int getX() {
return x;
}

public int getY¥Y () {
return y;
}

public void setLocation (int newX, int newY) {
X newx;
y newy;

}

public void translate(int dx, int dy) {
4 R A b

Y i sde BV

14

——,:— Copyright 2008 by Pearson Education

B O
Client code, version 4

e e N T DR B B I R Py
publieiigtat e veidimain (String il args)i
// create two Point objects
ETa N S R oA G S AN S NI SR O B s O
Point p2 = new Point (4, 3);

// print each point
SySEemrontrprintinttplaraearaplageeX (bt e pbaget Y O byt
Systemvontvprinttnthp2eatiirrpdogeX Oy ket atioe e p2 o ge Y (et

// move p2 and then print it again
A N e MR e
Sygtemrountiprintintplaacvsrpdioga X oGyttt n g ge Y ()t

}

OUTPUT:

piis i)
St b S
e il U S

R

e

~ Copyright 2008 by Pearson Education

Benefits of encapsulation

e Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.
» A bank app forbids a client to change an Account's balance.

* Allows you to change the class implementation.

* Point could be rewritten to use polar coordinates
(radius r, angle @), but with the same methods. i

Y

* Allows you to constrain objects' state (invariants).
« Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: toString, this

reading: 8.6 - 8.7
self-checks: #13-18, 20-21
exercises: #5, 9, 14

~ Copyright 2008 by Pearson Education

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

" Copyright 2008 by Pearson Education

T o O

Printing objects

* By default, Java doesn't know how to print objects:

Polntipa=rnewryPornt Ghiavalye
Systemiout printin(Nes Wit o)y /) piPoint@9%eBe34

* We can print a better string (but this is cumbersome):

systemiontiprantblin (Npa st R pine e pg

» We'd like to be able to print the object itself:

// desired behavior
S Ee o rranilg (e e e O e (IO)

Copyright 2008 by Pearson Education

/ﬂ;toString method

* tells Java how to convert an object into a string

* called when an object is printed/concatenated to a String:
e e 8 PR e B R s R
SRae s bR Ol e o A e s R

» If you prefer, you can write .toString () explicitly.
System.outiprintin(fpla V. + pl . toSktring()) ;

* Every class has a toString, even if it isn't in your code.
» The default is the class's name and a hex (base-16) number:

Point@9e8c34

il Copyright 2008 by Pearson Education

T o O

toString syntax

publrcist rrng tostrangii) =y
code that returns a suitable String;

» The method name, return, parameters must match exactly.
« Example:

// Returns a String representing this Point.
publzevsString toSEring (v g

return "(" e G o LA y e ")",

14

}

5
Copyright 2008 by Pearson Education

”fjgggggﬁﬁfﬂﬂﬂ———ﬂﬂ—_—ﬁ -
Client code

// This client program uses the Point class.
035l ot e oINS N R A o Bl o i b M a it
publiestatie vold matniSEring il args) i
// create two Point objects
Point pl = new Point (7, 2);
PoipErp2iernaw Rarnpiide i gy

// print each point
System.out.println("pl: " + pl);

System.out.println("p2: " + p2);

// compute/print each point's distance from the origin

R AR =Y 1 PN OB § iy O i B a2 T G & 4 09 40 09 o o i R0 o~ i G 100 VY 6 G & 5 0 A O IO A s M = o 1 L O o R O i o Y A2
e AN Y IO N I O A Rl o B G P Y < U M M S Y R] S Y 10 YO G MG s e 5) A S O 8 AN O A s M s = o o L B 20 S O A o 4 Y A

// move pl and p2 and print them again
plrarrangbate il gy

pZrarransate s
System.out.println("pl: " + pl);
System.out.println("p2: " + p2);

// compute/print distance from pl to p2
System.out.println ("distance from pl to p2: " + pl.distance(p2)):

el

o Copyright 2008 by Pearson Education

The keyword this

reading: 8.7

-

~ " Copyright 2008 by Pearson E ducation

this

* this : A reference to the implicit parameter.

o implicit parameter: object on which a method is called
e Syntax for using this:

» To refer to a field:

this.field

» To call a method:
this.method (parameters) ;

e To call a constructor from another constructor:
this (parameters) ;

Copyright 2008 by Pearson Education

Variable names and scope

» Usually it is illegal to have two variables in the same scope
with the same name.

Srodenl eknae RS SIS WA AR
privateint X
private 1nt y;

A N R S e e oy e N A e B SO e e VR
X = newX;
Yy = newy;

}

» The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education

———
Variable shadowing
* An instance method parameter can have the same name as
one of the object's fields:

// this is legal

pubircvworldisetbocabromting o vant ey

}

» Fields x and y are shadowed by parameters with same names.
» Any setLocation code that refers to x or y will use the

parameter, not the field.

10

ks Copyright 2008 by Pearson Education

T o O
Avoiding shadowing w/ this

publi e elass Podnt i
private 1nt x;
private int y;

pubivevwordiisetlocabonmbint R aant ey
this.x = x;
this.y = y;

* Inside the setLocation method,
» When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

i - Copyright 2008 by Pearson Education

Copyright 2008 by Pearson Education

% 4/;554%/¢y<:/,,
Multiple constructors

e It is legal to have more than one constructor in a class.
» The constructors must accept different parameters.

publierelass Pornting
AR o MY
Privabterint v

public Point () ({

X 0;

y = 0;

}

0 bl ol bile i lo bl el Gl s s e R N O Bt i et o L D An i
D a s i b i) .
Vo vdp b gl

}

i

#/;§,¢¢/f’i:/——
Constructors and this

* One constructor can call another using this:

publaciclass ‘Poingiid
DAt e e
private int y;

Dbl ad MiEYe St L et Y e
this (0, 0); // calls the (x, y) constructor

}

publ e Pornt flntix,wa ity
this.x %
this.y V&

— g 13
: Copyright 2008 by Pearson Education

