
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1-8.3

self-checks: Ch. 8 #1-9

exercises: Ch. 8 #1-4

Copyright 2008 by Pearson Education
2

Problem
 Declaring same group of related variables several times in

a program

int x1 = 3;

int y1 = 5;

int x2 = 12;

int y2 = 4;

 Annoying and redundant

 Unclear and hard to keep track of variables

Copyright 2008 by Pearson Education
3

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class <object name> {

<field(s)>;

}

 Syntax to use this data structure:

<object> <variable> = new <object>();

Copyright 2008 by Pearson Education
4

Solution: Objects
 Group together related variables into an object

 Like creating your own data structure out of Java building
blocks

public class Point {

int x;

int y;

}

 Syntax to use this data structure:

Point p1 = new Point();

Copyright 2008 by Pearson Education
5

Two Uses for Java Classes

class: A program entity that represents
either:

1. A program / module, or

2. A template for a new type of objects.

 The DrawingPanel class is a template for
creating DrawingPanel objects.

object: An entity that combines state and
behavior

Copyright 2008 by Pearson Education
6

Java class: Program
 An executable program with a main method

 Can be run; statements execute procedurally

 What we’ve been writing all quarter

public class BMI2 {

public static void main(String[] args) {

giveIntro();

Scanner console = new Scanner(System.in);

double bmi1 = getBMI(console);

double bmi2 = getBMI(console);

reportResults(bmi1, bmi2);

}

...

}

Copyright 2008 by Pearson Education
7

Java class: Object Definition
 A blueprint for a new data type

 Not executable, not a complete program

 Created objects are an instance of the class

 Blueprint:
public class Point {

int x;

int y;

}

 Instance:

Point p1 = new Point();

Copyright 2008 by Pearson Education
8

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = “Octopus’s Garden"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = “Lovely Rita"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = “For No One"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

create
s

Copyright 2008 by Pearson Education
9

Abstraction

 abstraction: A distancing between ideas and details.

 We can use objects without knowing how they work.

 abstraction in an iPod:

 You understand its external behavior (buttons, screen).

 You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
10

Client and Object Classes
 client program: A program that uses objects.

 Example: HW6 Names is a client of DrawingPanel and
Graphics.

 object: An entity that combines state and behavior

 state: data fields

 behavior: methods

Copyright 2008 by Pearson Education
11

The Object Concept
 procedural programming: Programs that perform their

behavior as a series of steps to be carried out

 object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects

 Takes practice to understand the object concept

Copyright 2008 by Pearson Education
12

Fields

 field: A variable inside an object that is part of its
state.

 Each object has its own copy of each field.

 Clients can access/modify an object's fields

 access: <variable>.<field>

 modify: <variable>.<field> = <value>;

 Example:
Point p1 = new Point();

Point p2 = new Point();

System.out.println("the x-coord is " + p1.x); // access

p2.y = 13; // modify

Copyright 2008 by Pearson Education
13

Behavior
 Objects can tie related data and behavior together

 instance method: A method inside an object that
operates on that object
public <type> <name> (<parameter(s)>) {

<statement(s)>;
}

 Syntax to use method:

<variable>.<method>(<parameter(s)>);

 Example:

p1.translate(11, 6);

Copyright 2008 by Pearson Education
14

Implicit Parameter

 Each instance method call happens on a
particular object.
 Example: p1.translate(11, 6);

 The code for an instance method has an
implied knowledge of what object it is
operating on.

 implicit parameter: The object on which an
instance method is called.

 Can be referred to inside the object using this
keyword

Copyright 2008 by Pearson Education
15

Accessors

 accessor: An instance method that provides
information about the state of an object.

 Example:
public double distanceFromOrigin() {

return Math.sqrt(x * x + y * y);

}

 This gives clients "read-only" access to the
object's fields.

Copyright 2008 by Pearson Education
16

Mutators

mutator: An instance method that modifies
the object’s internal state.

 Example:
public void translate(int dx, int dy) {

x += dx;
y += dy;

}

 This gives clients both read and write access
to code.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-2: Constructors and Encapsulation

reading: 8.4 - 8.5

self-checks: #10-17

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
2

Object initialization:
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
3

Initializing objects
 Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

 We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

 We are able to this with most types of objects in Java.

Copyright 2008 by Pearson Education
4

Constructors

 constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

 runs when the client uses the new keyword

 does not specify a return type;

it implicitly returns the new object being created

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
5

Constructor example

public class Point {

int x;

int y;

// Constructs a Point at the given x/y location.

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

}

Copyright 2008 by Pearson Education
6

Tracing a constructor call
 What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

public void translate(int dx, int dy) {

x += dx;

y += dy;

}

x yp1

Copyright 2008 by Pearson Education
7

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.x + ", " + p1.y + ")");

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}

}

OUTPUT:
p1: (5, 2)

p2: (4, 3)

p2: (6, 7)

Copyright 2008 by Pearson Education
8

Common constructor bugs
 Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

 This is not a constructor at all, but a method!

 Storing into local variables instead of fields ("shadowing"):

public Point(int initialX, int initialY) {

int x = initialX;

int y = initialY;

}

 This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

Copyright 2008 by Pearson Education
9

Multiple constructors
 A class can have multiple constructors.

 Each one must accept a unique set of parameters.

 Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

Copyright 2008 by Pearson Education

10

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
11

Encapsulation
 encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

 separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
12

Private fields
 A field can be declared private.

 No code outside the class can access or change it.

private type name;

 Examples:

private int id;

private String name;

 Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
13

Accessing private state
 We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

 Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
14

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
15

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(5, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again

p2.translate(2, 4);

System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}

}

OUTPUT:
p1 is (5, 2)

p2 is (4, 3)

p2 is (6, 7)

Copyright 2008 by Pearson Education
16

Benefits of encapsulation
 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 A bank app forbids a client to change an Account's balance.

 Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

 Allows you to constrain objects' state (invariants).

 Example: Only allow Points with non-negative coordinates.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-3: toString, this

reading: 8.6 - 8.7

self-checks: #13-18, 20-21

exercises: #5, 9, 14

Copyright 2008 by Pearson Education
2

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
3

Printing objects
 By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);

System.out.println("p: " + p); // p: Point@9e8c34

 We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")");

 We'd like to be able to print the object itself:

// desired behavior

System.out.println("p: " + p); // p: (10, 7)

Copyright 2008 by Pearson Education
4

The toString method

 tells Java how to convert an object into a String

 called when an object is printed/concatenated to a String:

Point p1 = new Point(7, 2);

System.out.println("p1: " + p1);

 If you prefer, you can write .toString() explicitly.

System.out.println("p1: " + p1.toString());

 Every class has a toString, even if it isn't in your code.

 The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a suitable String;

}

 The method name, return, parameters must match exactly.

 Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

Copyright 2008 by Pearson Education
6

Client code
// This client program uses the Point class.

public class PointMain {

public static void main(String[] args) {

// create two Point objects

Point p1 = new Point(7, 2);

Point p2 = new Point(4, 3);

// print each point

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print each point's distance from the origin

System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again

p1.translate(11, 6);

p2.translate(1, 7);

System.out.println("p1: " + p1);

System.out.println("p2: " + p2);

// compute/print distance from p1 to p2

System.out.println("distance from p1 to p2: " + p1.distance(p2));

}

}

Copyright 2008 by Pearson Education
7

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
8

this

 this : A reference to the implicit parameter.

 implicit parameter: object on which a method is called

 Syntax for using this:

 To refer to a field:

this.field

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

Copyright 2008 by Pearson Education
9

Variable names and scope
 Usually it is illegal to have two variables in the same scope

with the same name.

public class Point {

private int x;

private int y;

...

public void setLocation(int newX, int newY) {

x = newX;

y = newY;

}

}

 The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
10

Variable shadowing
 An instance method parameter can have the same name as

one of the object's fields:

// this is legal

public void setLocation(int x, int y) {

...

}

 Fields x and y are shadowed by parameters with same names.

 Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
11

Avoiding shadowing w/ this
public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) {

this.x = x;

this.y = y;

}

}

 Inside the setLocation method,

 When this.x is seen, the field x is used.

 When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
12

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {

private int x;

private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

...

}

Copyright 2008 by Pearson Education
13

Constructors and this

 One constructor can call another using this:

public class Point {

private int x;

private int y;

public Point() {

this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

