
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-1: Arrays

reading: 7.1

self-checks: #1-9

videos: Ch. 7 #4

Copyright 2008 by Pearson Education
2

Can we solve this problem?
� Consider the following program (input underlined):

How many days' temperatures? 7
Day 1's high temp: 45
Day 2's high temp: 44
Day 3's high temp: 39
Day 4's high temp: 48
Day 5's high temp: 37
Day 6's high temp: 46
Day 7's high temp: 53
Average temp = 44.6
4 days were above average.

Copyright 2008 by Pearson Education
3

Why the problem is hard
� We need each input value twice:

� to compute the average (a cumulative sum)

� to count how many were above average

� We could read each value into a variable... but we:

� don't know how many days are needed until the program runs

� don't know how many variables to declare

� We need a way to declare many variables in one step.

Copyright 2008 by Pearson Education
4

Arrays
� array: object that stores many values of the same type.

� element: One value in an array.

� index: A 0-based integer to access an element from an array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

Copyright 2008 by Pearson Education
5

Array declaration
type[] name = new type[length];

� Example:

int[] numbers = new int[10];

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
6

Array declaration, cont.
� The length can be any integer expression.

int x = 2 * 3 + 1;

int[] data = new int[x % 5 + 2];

� Each element initially gets a "zero-equivalent" value.

null
(means, "no object")

String
or other object

falseboolean

0.0double

0int

Default valueType

Copyright 2008 by Pearson Education
7

Accessing elements
name[index] // access
name[index] = value; // modify

� Example:

numbers[0] = 27 ;
numbers[3] = -6 ;

System.out.println(numbers[0]);
if (numbers[3] < 0) {

System.out.println("Element 3 is negative.");
}

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

index 0 1 2 3 4 5 6 7 8 9

value 27 0 0 -6 0 0 0 0 0 0

Copyright 2008 by Pearson Education
8

Arrays of other types
double[] results = new double[5];
results[2] = 3.4;
results[4] = -0.5;

boolean[] tests = new boolean[6];
tests[3] = true;

index 0 1 2 3 4

value 0.0 0.0 3.4 0.0 -0.5

index 0 1 2 3 4 5

value false false false true false false

Copyright 2008 by Pearson Education
9

Out-of-bounds
� Legal indexes: between 0 and the array's length - 1.

� Reading or writing any index outside this range will throw an
ArrayIndexOutOfBoundsException .

� Example:
int[] data = new int[10];
System.out.println(data[0]); // okay
System.out.println(data[9]); // okay
System.out.println(data[-1]); // exception
System.out.println(data[10]); // exception

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
10

Accessing array elements
int[] numbers = new int[8];
numbers[1] = 3;
numbers[4] = 99;
numbers[6] = 2;

int x = numbers[1];
numbers[x] = 42;
numbers[numbers[6]] = 11; // use numbers[6] as index

x

numbers

x 3

index 0 1 2 3 4 5 6 7

value

index 0 1 2 3 4 5 6 7

value 0 4 11 42 99 0 2 0

Copyright 2008 by Pearson Education
11

Arrays and for loops

� It is common to use for loops to access array elements.

for (int i = 0; i < 8; i++) {
System.out.print(numbers[i] + " ");

}
System.out.println(); // output: 0 4 11 0 44 0 0 2

� Sometimes we assign each element a value in a loop.

for (int i = 0; i < 8; i++) {

numbers[i] = 2 * i;

}

index 0 1 2 3 4 5 6 7

value 0 2 4 6 8 10 12 14

Copyright 2008 by Pearson Education
12

The length field
� An array's length field stores its number of elements.

name.length

for (int i = 0; i < numbers.length ; i++) {
System.out.print(numbers[i] + " ");

}
// output: 0 2 4 6 8 10 12 14

� It does not use parentheses like a String's .length() .

� What expressions refer to:

� The last element of any array?

� The middle element?

Copyright 2008 by Pearson Education
13

Weather question
� Use an array to solve the weather problem:

How many days' temperatures? 7
Day 1's high temp: 45
Day 2's high temp: 44
Day 3's high temp: 39
Day 4's high temp: 48
Day 5's high temp: 37
Day 6's high temp: 46
Day 7's high temp: 53
Average temp = 44.6
4 days were above average.

Copyright 2008 by Pearson Education
14

Weather answer
// Reads temperatures from the user, computes avera ge and # days above average.
import java.util.*;

public class Weather {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("How many days' temperatures? ");
int days = console.nextInt();

int[] temperatures = new int[days]; // array to store days' temperatures
int sum = 0;

for (int i = 0; i < days; i++) { // read/store each day's temperature
System.out.print("Day " + (i + 1) + "'s high temp: ");
temperatures[i] = console.nextInt();
sum += temperatures[i];

}
double average = (double) sum / days;

int count = 0; // see if each day is above average
for (int i = 0; i < days; i++) {

if (temperatures[i] > average) {
count++;

}
}

// report results
System.out.printf("Average temp = %.1f\n", average);
System.out.println(count + " days above average");

}
}

Copyright 2008 by Pearson Education

Arrays for
counting and tallying

reading: 7.1

self-checks: #8

Copyright 2008 by Pearson Education
16

A multi-counter problem
� Problem: Examine a large integer and count the number
of occurrences of every digit from 0 through 9.

� Example: The number 229231007 contains:

two 0s, one 1, three 2s, one 7, and one 9.

� We could declare 10 counter variables for this...
int counter0, counter1, counter2, counter3, counter 4,

counter5, counter6, counter7, counter8, counter9;

� Yuck!

Copyright 2008 by Pearson Education
17

A multi-counter problem
� A better solution is to use an array of size 10.

� The element at index i will store the counter for digit value i.

� for integer value 229231007, our array should store:

� The index at which a value is stored has meaning.

� Sometimes it doesn't matter.

� What about the weather case?

index 0 1 2 3 4 5 6 7 8 9

value 2 1 3 0 0 0 0 1 0 1

Copyright 2008 by Pearson Education
18

Creating an array of tallies

int num = 229231007;
int[] counts = new int[10];
while (num > 0) {

// pluck off a digit and add to proper counter
int digit = num % 10;
counts[digit]++;
num = num / 10;

}

index 0 1 2 3 4 5 6 7 8 9

value 2 1 3 0 0 0 0 1 0 1

Copyright 2008 by Pearson Education
19

Array histogram question
� Given a file of integer exam scores, such as:

82
66
79
63
83

Write a program that will print a histogram of stars indicating
the number of students who earned each unique exam score.

85: *****
86: ************
87: ***
88: *
91: ****

Copyright 2008 by Pearson Education
20

Histogram variations
� Curve the scores; add a fixed number to each score.
(But don't allow a curved score to exceed the max of 101.)

� Chart the data with a DrawingPanel .

� window is 100px tall

� 2px between each bar

� 10px tall bar for each student who earned that score

Copyright 2008 by Pearson Education
21

Array histogram answer
// Reads an input file of test scores (integers) an d displays a
// graphical histogram of the score distribution.
import java.awt.*;
import java.io.*;
import java.util.*;

public class Histogram {
public static final int CURVE = 5; // adjustment to each exam score

public static void main(String[] args) throws FileN otFoundException {
Scanner input = new Scanner(new File("midterm.txt")) ;
int[] counts = new int[101]; // counters of test scores 0 - 100

while (input.hasNextInt()) { // read file into counts array
int score = input.nextInt();
score = Math.min(score + CURVE, 100); // curve the exam score
counts[score]++; // if score is 87, then counts[87]++

}

for (int i = 0; i < counts.length; i++) { // print star histogram
if (counts[i] > 0) {

System.out.print(i + ": ");
for (int j = 0; j < counts[i] ; j++) {

System.out.print("*");
}
System.out.println();

}
}

...

Copyright 2008 by Pearson Education
22

Array histogram solution 2

...

// use a DrawingPanel to draw the histogram
DrawingPanel p = new DrawingPanel(counts.length * 3 + 6, 200);
Graphics g = p.getGraphics();
g.setColor(Color.BLACK);
for (int i = 0; i < counts.length; i++) {

g.drawLine(i * 3 + 3, 175, i * 3 + 3, 175 - 5 * count s[i]);
}

}
}

Copyright 2008 by Pearson Education

Array traversals,
text processing

reading: 7.1, 4.4

self-check: Ch. 7 #8, Ch. 4 #19-23

Copyright 2008 by Pearson Education
2

Array traversals
 traversal: An examination of each element of an array.

for (int i = 0; i < array.length; i++) {

do something with array[i];

}

 Examples:

 printing the elements

 searching for a specific value

 rearranging the elements

 computing the sum, product, etc.

Copyright 2008 by Pearson Education
3

Quick array initialization
type[] name = {value, value, … value};

 Example:

int[] numbers = {12, 49, -2, 26, 5, 17, -6};

 Useful when you know what the array's elements will be

 The compiler figures out the size by counting the values

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

Copyright 2008 by Pearson Education
4

"Array mystery" problem
 What element values are stored in the following array?

int[] a = {1, 7, 5, 6, 4, 14, 11};

for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i + 1]) {

a[i + 1] = a[i + 1] * 2;

}

}

index 0 1 2 3 4 5 6

value

index 0 1 2 3 4 5 6

value 1 7 10 12 8 14 22

Copyright 2008 by Pearson Education
5

Text processing
 text processing: Examining, editing, formatting text.

 Often involves for loops to examine each letter of a String.

 Count the number of times the letter 's' occurs in a file.

 Find which letter is most common in a file.

 Count A, C, T and Gs in Strings representing DNA strands.

 Strings are represented internally as arrays of char.

String str = "Ali G.";

index 0 1 2 3 4 5

value 'A' 'l' 'i' ' ' 'G' '.'

Copyright 2008 by Pearson Education
6

Recall: type char

 char: A primitive type representing a single character.

 Values are surrounded with apostrophes: 'a' or '4' or '\n'

 Access a string's characters with its charAt method.

String word = console.next();

char firstLetter = word.charAt(0);

if (firstLetter == 'c') {

System.out.println("That's good enough for me!");

}

 Use for loops to examine each character.

String coolMajor = "CSE";

for (int i = 0; i < coolMajor.length(); i++) {

System.out.println(coolMajor.charAt(i));

}

Copyright 2008 by Pearson Education
7

Text processing question
 Write a method tallyVotes that accepts a String

parameter and prints the number of McCain, Obama and
independent voters.

// (M)cCain, (O)bama, (I)ndependent

String voteText = "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO";

tallyVotes(voteText);

 Output:

Votes: [16, 14, 3]

Copyright 2008 by Pearson Education
8

Arrays.toString

 Arrays.toString accepts an array as a parameter and
returns a String representation of its elements.

int[] e = {0, 2, 4, 6, 8};

e[1] = e[3] + e[4];

System.out.println("e is " + Arrays.toString(e));

Output:

e is [0, 14, 4, 6, 8]

 Must import java.util.*;

Copyright 2008 by Pearson Education
9

The Arrays class

 Class Arrays in package java.util has useful static

methods for manipulating arrays:

Method name Description

binarySearch(array, value) returns the index of the given value
in a sorted array (< 0 if not found)

equals(array1, array2) returns true if the two arrays

contain the same elements in the
same order

fill(array, value) sets every element in the array to
have the given value

sort(array) arranges the elements in the array
into ascending order

toString(array) returns a string representing the
array, such as "[10, 30, 17]"

Copyright 2008 by Pearson Education
10

Text processing answer
public static int[] tallyVotes(String votes) {

int[] tallies = new int[3]; // M -> 0, O -> 1, I -> 2

for(int i = 0; i < votes.length(); i++) {

if(votes.charAt(i) == 'M') {

tallies[0]++;

} else if(votes.charAt(i) == 'O') {

tallies[1]++;

} else { // votes.charAt(i) == 'I'

tallies[2]++;

}

}

System.out.println("Votes: " + Arrays.toString(tally));;

}

Copyright 2008 by Pearson Education
11

Arrays as parameters
and returns;

values vs. references

reading: 7.1, 3.3, 4.3

self-checks: Ch. 7 #5, 8, 9

exercises: Ch. 7 #1-10

11

Copyright 2008 by Pearson Education
12

Swapping values
public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b (incorrectly)

a = b;

b = a;

System.out.println(a + " " + b);

}

 What is wrong with this code? What is its output?

 The red code should be replaced with:

int temp = a;

a = b;

b = temp;

Copyright 2008 by Pearson Education
13

A swap method?

 Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

Copyright 2008 by Pearson Education
14

Value semantics (primitives)

 value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.

 When one primitive variable is assigned to another,
its value is copied.

 Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x = 5, y = 5

y = 17; // x = 5, y = 17

x = 8; // x = 8, y = 17

x

y

Copyright 2008 by Pearson Education
15

Reference semantics (objects)

 reference semantics: Behavior where variables actually
store the address of an object in memory.

 When one reference variable is assigned to another, the object
is not copied; both variables refer to the same object.

 Modifying the value of one variable will affect others.

int[] a1 = {4, 5, 2, 12, 14, 14, 9};

int[] a2 = a1; // refer to same array as a1

a2[0] = 7;

System.out.println(a1[0]); // 7

index 0 1 2 3 4 5 6

value 4 5 2 12 14 14 9

index 0 1 2 3 4 5 6

value 7 5 2 12 14 14 9

a1

a2

Copyright 2008 by Pearson Education
16

References and objects
 Arrays and objects use reference semantics. Why?

 efficiency. Copying large objects slows down a program.

 sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

Copyright 2008 by Pearson Education
17

Objects as parameters
 When an object is passed as a parameter, the object is not

copied. The parameter refers to the same object.

 If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);

example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);

}

panel

window

Copyright 2008 by Pearson Education
18

Arrays as parameters
 Declaration:

public static type methodName(type[] name) {

 Example:

public static double average(int[] numbers) {

 Call:
methodName(arrayName);

 Example:

int[] scores = {13, 17, 12, 15, 11};

double avg = average(scores);

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 7

Lecture 7-3: Arrays as Parameters; File Output

reading: 7.1, 4.3, 3.3

self-checks: Ch. 7 #19-23

exercises: Ch. 7 #5

Copyright 2008 by Pearson Education
2

Section attendance question
 Write a program that reads a data file of section attendance

and produces the following output:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

• Students earn 3 points for each section attended up to 20.

Copyright 2008 by Pearson Education
3

Section input file
 The input file contains section attendance data:

111111101011111101001110110110110001110010100

111011111010100110101110101010101110101101010

110101011011011011110110101011010111011010101

 Each line represents a section (5 students, 9 weeks).

 1 means the student attended; 0 not.

week1 week2 week3 week4 week5 week6 week7 week8 week9

11111 11010 11111 10100 11101 10110 11000 11100 10100

week2

student1 student2 student3 student4 student5

1 1 0 1 0

Copyright 2008 by Pearson Education
4

Data transformations
 In this problem we go from 0s and 1s to student grades

 This is called transforming the data.

 Often each transformation is stored in its own array.

 We must map between the data and array indexes.

Examples:

 by position (store the i th value we read at index i)

 tally (if input value is i, store it at array index i)

 explicit mapping (count 'M' at index 0, count 'O' at index 1)

Copyright 2008 by Pearson Education
5

Section attendance answer
// This program reads a file representing which students attended which
// discussion sections and produces output of their attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

String line = input.nextLine(); // process one section
int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

if (line.charAt(i) == '1') { // c == '1' or c == '0'
attended[i % 5]++; // student attended section

}
}
int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
System.out.println("Sections attended: " + Arrays.toString(attended));
System.out.println("Sections scores: " + Arrays.toString(points));
System.out.println("Sections grades: " + Arrays.toString(grades));
System.out.println();

}
}

}

Copyright 2008 by Pearson Education
6

Array parameter example
public static void main(String[] args) {

int[] iq = {126, 84, 149, 167, 95};

double avg = average(iq);

System.out.println("Average = " + avg);

}

public static double average(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum += array[i];

}

return (double) sum / array.length;

}

Output:
Average = 124.2

Copyright 2008 by Pearson Education
7

Arrays passed by reference
 Arrays are objects.

 When passed as parameters, they are passed by reference.

(Changes made in the method are also seen by the caller.)

 Example:

public static void main(String[] args) {
int[] iq = {126, 167, 95};
doubleAll(iq);
System.out.println(Arrays.toString(iq));

}

public static void doubleAll(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

 Output:
[252, 334, 190]

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

Copyright 2008 by Pearson Education
8

Arrays as return (declaring)

public static type[] methodName(parameters) {

 Example:

public static int[] countDigits(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10;

n = n / 10;

counts[digit]++;

}

return counts;

}

Copyright 2008 by Pearson Education
9

Arrays as return (calling)

type[] name = methodName(parameters);

 Example:

public static void main(String[] args) {

int[] tally = countDigits(229231007);

System.out.println(Arrays.toString(tally));

}

Output:

[2, 1, 3, 1, 0, 0, 0, 1, 0, 1]

Copyright 2008 by Pearson Education
10

Array param/return question
 Modify our previous Sections program to use static

methods that use arrays as parameters and returns.

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
11

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points, double[] grades) {

System.out.println("Sections attended: " + Arrays.toString(attended));
System.out.println("Sections scores: " + Arrays.toString(points));
System.out.println("Sections grades: " + Arrays.toString(grades));
System.out.println();

}

...

Copyright 2008 by Pearson Education
12

Array param/return answer
...

// Counts the sections attended by each student for a particular section.
public static int[] countAttended(String line) {

int[] attended = new int[5];
for (int i = 0; i < line.length(); i++) {

char c = line.charAt(i);
// c == '1' or c == '0'
if (c == '1') {

// student attended their section
attended[i % 5]++;

}
}
return attended;

}

// Computes the points earned for each student for a particular section.
public static int[] computePoints(int[] attended) {

int[] points = new int[5];
for (int i = 0; i < attended.length; i++) {

points[i] = Math.min(20, 3 * attended[i]);
}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

Copyright 2008 by Pearson Education
13

File output

reading: 6.4 - 6.5

Copyright 2008 by Pearson Education
14

Output to files
 PrintStream: An object in the java.io package that lets

you print output to a destination such as a file.

 Any methods you have used on System.out

(such as print, println) will work on a PrintStream.

 Syntax:

PrintStream name = new PrintStream(new File("file name"));

Example:
PrintStream output = new PrintStream(new File("out.txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

Copyright 2008 by Pearson Education
15

Details about PrintStream

PrintStream name = new PrintStream(new File("file name"));

 If the given file does not exist, it is created.

 If the given file already exists, it is overwritten.

 The output you print appears in a file, not on the console.

You will have to open the file with an editor to see it.

 Do not open the same file for both reading (Scanner) and

writing (PrintStream) at the same time.

 You will overwrite your input file with an empty file (0 bytes).

Copyright 2008 by Pearson Education
16

System.out and PrintStream

 The console output object, System.out, is a PrintStream.

PrintStream out1 = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));

out1.println("Hello, console!"); // goes to console

out2.println("Hello, file!"); // goes to file

 A reference to it can be stored in a PrintStream variable.

 Printing to that variable causes console output to appear.

 You can pass System.out as a parameter to a method

expecting a PrintStream.

 Allows methods that can send output to the console or a file.

Copyright 2008 by Pearson Education
17

PrintStream question

 Modify our previous Sections program to use a

PrintStream to output to the file sections_out.txt.

Section #1:

Sections attended: [9, 6, 7, 4, 3]

Student scores: [20, 18, 20, 12, 9]

Student grades: [100.0, 90.0, 100.0, 60.0, 45.0]

Section #2:

Sections attended: [6, 7, 5, 6, 4]

Student scores: [18, 20, 15, 18, 12]

Student grades: [90.0, 100.0, 75.0, 90.0, 60.0]

Section #3:

Sections attended: [5, 6, 5, 7, 6]

Student scores: [15, 18, 15, 20, 18]

Student grades: [75.0, 90.0, 75.0, 100.0, 90.0]

Copyright 2008 by Pearson Education
18

PrintStream answer
// Section attendance program
// This version uses a PrintStream for output.

import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
PrintStream out = new PrintStream(new File("sections_out.txt"));
while (input.hasNextLine()) { // process one section

String line = input.nextLine();
int[] attended = countAttended(line);
int[] points = computePoints(attended);
double[] grades = computeGrades(points);
results(attended, points, grades, out);

}
}

// Produces all output about a particular section.
public static void results(int[] attended, int[] points,

double[] grades, PrintStream out) {
out.println("Sections attended: " + Arrays.toString(attended));
out.println("Sections scores: " + Arrays.toString(points));
out.println("Sections grades: " + Arrays.toString(grades));
out.println();

}
...

Copyright 2008 by Pearson Education
19

Prompting for a file name
 We can ask the user to tell us the file to read.

 The file name might have spaces; use nextLine(), not next()

// prompt for input file name

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

 What if the user types a file name that does not exist?

Copyright 2008 by Pearson Education
20

Fixing file-not-found issues
 File objects have an exists method we can use:

Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

File file = new File(filename);

if (!file.exists()) {
// try a second time
System.out.print("Try again: ");
String filename = console.nextLine();
file = new File(filename);

}

Scanner input = new Scanner(file); // open the file

Output:

Type a file name to use: hourz.text

Try again: hours.txt

