
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 6

Lecture 6-1: File Input with Scanner

reading: 6.1 - 6.2, 5.3

self-check: Ch. 6 #1-6

exercises: Ch. 6 #5-7

videos: Ch. 6 #1-2

Copyright 2008 by Pearson Education
2

Input/output (I/O)
import java.io.*;

� Create a File object to get info about a file on disk.

(This doesn't actually create a new file on the hard disk.)

File f = new File("example.txt");
if (f.exists() && f.length() > 1000) {

f.delete();
}

whether this file exists on diskexists()

returns file's namegetName()

changes name of filerenameTo(file)

removes file from diskdelete()

returns number of bytes in filelength()

returns whether file is able to be readcanRead()

DescriptionMethod name

Copyright 2008 by Pearson Education
3

Reading files
� To read a file, pass a File when constructing a Scanner .

Scanner name = new Scanner(new File(" file name"));

Example:

File file = new File("mydata.txt");

Scanner input = new Scanner(file);

or, better yet:

Scanner input = new Scanner(new File("mydata.txt"));

Copyright 2008 by Pearson Education
4

File paths
� absolute path: specifies a drive or a top "/" folder

C:/Documents/smith/hw6/input/data.csv

� Windows can also use backslashes to separate folders.

� relative path: does not specify any top-level folder
names.dat
input/kinglear.txt

� Assumed to be relative to the current directory:

Scanner input = new Scanner(new File("data/readme.txt"));

If our program is in H:/hw6 ,
Scanner will look for H:/hw6/data/readme.txt

Copyright 2008 by Pearson Education
5

Compiler error w/ files
� The following program does not compile:

import java.io.*; // for File
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

� The following error occurs:

ReadFile.java:6: unreported exception java.io.FileN otFoundException;
must be caught or declared to be thrown

Scanner input = new Scanner(new File("data.txt"));
^

Copyright 2008 by Pearson Education
6

Exceptions

� exception: An object representing a runtime error.

� dividing an integer by 0

� calling charAt on a String and passing too large an index

� trying to read the wrong type of value from a Scanner

� trying to read a file that does not exist

� We say that a program with an error "throws" an exception.

� It is also possible to "catch" (handle or fix) an exception.

� checked exception: An error that must be handled by our

program (otherwise it will not compile).

� We must specify how our program will handle file I/O failures.

Copyright 2008 by Pearson Education
7

The throws clause

� throws clause: Keywords on a method's header that state

that it may generate an exception.

� Syntax:

public static type name(params) throws type {

� Example:

public class ReadFile {

public static void main(String[] args)

throws FileNotFoundException {

� Like saying, "I hereby announce that this method might throw

an exception, and I accept the consequences if it happens."

Copyright 2008 by Pearson Education
8

Input tokens

� token: A unit of user input, separated by whitespace.

� A Scanner splits a file's contents into tokens.

� If an input file contains the following:

23 3.14
"John Smith"

The Scanner can interpret the tokens as the following types:

Token Type(s)
23 int , double , String
3.14 double , String
"John String
Smith" String

Copyright 2008 by Pearson Education
9

Files and input cursor
� Consider a file numbers.txt that contains this text:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� A Scanner views all input as a stream of characters:

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

� input cursor: The current position of the Scanner .

Copyright 2008 by Pearson Education
10

Consuming tokens
� consuming input: Reading input and advancing the cursor.

� Calling nextInt etc. moves the cursor past the current token.

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

double x = input.nextDouble(); // 308.2

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

String s = input.next(); // "14.9"

308.2\n 14.9 7.4 2.8\n\n3.9 4.7 -15.4\n 2.8\n

^

Copyright 2008 by Pearson Education
11

File input question
� Recall the input file numbers.txt :

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� Write a program that reads the first 5 values from the file
and prints them along with their sum.

number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
Sum = 337.2

Copyright 2008 by Pearson Education
12

File input answer
// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.txt"));
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum = sum + next;

}
System.out.printf("Sum = %.1f\n", sum);

}
}

Copyright 2008 by Pearson Education
13

Scanner exceptions
� InputMismatchException

� You read the wrong type of token (e.g. read "hi" as int).

� NoSuchElementException
� You read past the end of the input.

� Finding and fixing these exceptions:

� Read the exception text for line numbers in your code (the
first line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementE xception

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

Copyright 2008 by Pearson Education
14

Reading an entire file
� Suppose we want our program to process the entire file.

(It should work no matter how many values are in the file.)

number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
number = 4.7
number = -15.4
number = 2.8
Sum = 329.3

Copyright 2008 by Pearson Education
15

Testing for valid input
� Scanner methods to see what the next token will be:

� These methods do not consume input;

they just give information about the next token.

� Useful to see what input is coming, and to avoid crashes.

returns true if there is a next token
and it can be read as a double

hasNextDouble(
)

returns true if there is a next token
and it can be read as an int

hasNextInt()

returns true if there are any more tokens of

input to read (always true for console input)

hasNext()

DescriptionMethod

Copyright 2008 by Pearson Education
16

Using hasNext methods
� To avoid exceptions:

Scanner console = new Scanner(System.in);
System.out.print("How old are you? ");
if (console.hasNextInt()) {

int age = console.nextInt(); // will not crash!
System.out.println("Wow, " + age + " is old!");

} else {
System.out.println("You didn't type an integer.");

}

� To detect the end of a file:

Scanner input = new Scanner(new File("example.txt")) ;
while (input.hasNext()) {

String token = input.next(); // will not crash!
System.out.println("token: " + token);

}

Copyright 2008 by Pearson Education
17

File input question 2
� Modify the Echo program to process the entire file:

(It should work no matter how many values are in the file.)

number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
number = 4.7
number = -15.4
number = 2.8
Sum = 329.3

Copyright 2008 by Pearson Education
18

File input answer 2
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.txt"));
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum = sum + next;

}
System.out.printf("Sum = %.1f\n", sum);

}
}

Copyright 2008 by Pearson Education
19

File input question 3
� Modify the Echo program to handle files that contain non-

numeric tokens (by skipping them).

� For example, it should produce the same output as before
when given this input file, numbers2.txt :

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

Copyright 2008 by Pearson Education
20

File input answer 3
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers2.txt"));
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum = sum + next;

} else {
input.next(); // throw away the bad token

}
}
System.out.printf("Sum = %.1f\n", sum);

}
}

Copyright 2008 by Pearson Education
21

Election question
� Write a program that reads a file poll.txt of poll data.

� Format: State Obama% McCain% ElectoralVotes Pollster

CT 56 31 7 Oct U. of Connecticut
NE 37 56 5 Sep Rasmussen
AZ 41 49 10 Oct Northern Arizona U.

� The program should print how many electoral votes each
candidate leads in, and who is leading overall in the polls.

Obama: 214 votes
McCain: 257 votes

Copyright 2008 by Pearson Education
22

Election answer
// Computes leader in presidential polls, based on input file such as:
// AK 42 53 3 Oct Ivan Moore Research

import java.io.*; // for File
import java.util.*; // for Scanner

public class Election {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("polls.txt"));
int obamaVotes = 0, mccainVotes = 0;

while (input.hasNext()) {
if (input.hasNextInt()) {

int obama = input.nextInt();
int mccain = input.nextInt();
int eVotes = input.nextInt();
if (obama > mccain) {

obamaVotes = obamaVotes + eVotes;
} else if (mccain > obama) {

mccainVotes = mccainVotes + eVotes;
}

} else {
input.next(); // skip non-integer token

}
}

System.out.println("Obama: " + obamaVotes + " votes");
System.out.println("McCain: " + mccainVotes + " vote s");

}
}

Copyright 2008 by Pearson Education

Line-based
file processing

reading: 6.3

self-check: #7-11

exercises: #1-4, 8-11

Copyright 2008 by Pearson Education
2

Hours question
 Given a file hours.txt with the following contents:

123 Kim 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Stef 8.0 8.0 8.0 8.0 7.5

 Consider the task of computing hours worked by each person:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Stef (ID#789) worked 39.5 hours (7.9 hours/day)

 Let's try to solve this problem token-by-token ...

Copyright 2008 by Pearson Education
3

Hours answer (flawed)
// This solution does not work!

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNext()) {

// process one person

int id = input.nextInt();

String name = input.next();

double totalHours = 0.0;

int days = 0;

while (input.hasNextDouble()) {

totalHours += input.nextDouble();

days++;

}

System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours (" +

(totalHours / days) + " hours/day)");

}

}

}

Copyright 2008 by Pearson Education
4

Flawed output
Susan (ID#123) worked 487.4 hours (97.48 hours/day)

Exception in thread "main"

java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)

at HoursWorked.main(HoursBad.java:9)

 The inner while loop is grabbing the next person's ID.

 We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

 A better solution is a hybrid approach:

 First, break the overall input into lines.

 Then break each line into tokens.

Copyright 2008 by Pearson Education
5

Line-based Scanner methods

 nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File("file name"));

while (input.hasNextLine()) {

String line = input.nextLine();

process this line;

}

Method Description

nextLine() returns the next entire line of input

hasNextLine() returns true if there are any more lines of input

to read (always true for console input)

Copyright 2008 by Pearson Education
6

Consuming lines of input
23 3.14 John Smith "Hello world"

45.2 19

 The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 String line = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 String line2 = input.nextLine();

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

 Each \n character is consumed but not returned.

Copyright 2008 by Pearson Education
7

Scanners on Strings

 A Scanner can tokenize the contents of a String:

Scanner name = new Scanner(String);

 Example:

String text = "15 3.2 hello 9 27.5";

Scanner scan = new Scanner(text);

int num = scan.nextInt();

System.out.println(num); // 15

double num2 = scan.nextDouble();

System.out.println(num2); // 3.2

String word = scan.next();

System.out.println(word); // hello

Copyright 2008 by Pearson Education
8

Tokenizing lines of a file

// Counts the words on each line of a file

Scanner input = new Scanner(new File("input.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

// process the contents of this line

int count = 0;

while (lineScan.hasNext()) {

String word = lineScan.next();

count++;

}

System.out.println("Line has " + count + " words");

}

Input file input.txt: Output to console:

The quick brown fox jumps over

the lazy dog.

Line has 6 words

Line has 3 words

Copyright 2008 by Pearson Education
9

Hours question
 Fix the Hours program to read the input file properly:

123 Kim 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Stef 8.0 8.0 8.0 8.0 7.5

 Recall, it should produce the following output:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

Stef (ID#789) worked 39.5 hours (7.9 hours/day)

Copyright 2008 by Pearson Education
10

Hours answer, corrected
// Processes an employee input file and outputs each employee's hours.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Hours {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Brad"

double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();

count++;

}

double average = sum / count;

System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");

}

}

}

Copyright 2008 by Pearson Education
11

Hours v2 question
 Modify the Hours program to search for a person by ID:

 Example:

Enter an ID: 456

Brad worked 36.8 hours (7.36 hours/day)

 Example:

Enter an ID: 293

ID #293 not found

Copyright 2008 by Pearson Education
12

Hours v2 answer 1
// This program searches an input file of employees' hours worked

// for a particular employee and outputs that employee's hours data.

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args) throws FileNotFoundException {

Scanner console = new Scanner(System.in);

System.out.print("Enter an ID: ");

int searchId = console.nextInt(); // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));

String line = findPerson(input, searchId);

if (line.length() > 0) {

processLine(line);

} else {

System.out.println("ID #" + searchId + " was not found");

}

}

...

Copyright 2008 by Pearson Education
13

Hours v2 answer 2
// Locates and returns the line of data about a particular person.

public static String findPerson(Scanner input, int searchId) {

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

if (id == searchId) {

return line; // we found them!

}

}

return ""; // not found, so return an empty line

}

// Totals the hours worked by the person and outputs their info.

public static void processLine(String line) {

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Brad"

double hours = 0.0;

int days = 0;

while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();

days++;

}

System.out.println(name + " worked " + hours + " hours ("

+ (hours / days) + " hours/day)");

}

}

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 6

Lecture 6-3: Searching Files

reading: 6.3, 6.5

Copyright 2008 by Pearson Education
15

Recall: Line-based methods

 nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File("file name"));

while (input.hasNextLine()) {

String line = input.nextLine();

process this line;

}

Method Description

nextLine() returns the next entire line of input

hasNextLine() returns true if there are any more lines of input

to read (always true for console input)

Copyright 2008 by Pearson Education
16

Recall: Tokenizing lines
 A String Scanner can tokenize each line of a file.

Scanner input = new Scanner(new File("file name"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

process the contents of this line...;

}

Copyright 2008 by Pearson Education
17

Hours v2 question
 Modify the Hours program to search for a person by ID:

 Example:

Enter an ID: 456

Brad worked 36.8 hours (7.36 hours/day)

 Example:

Enter an ID: 293

ID #293 not found

Copyright 2008 by Pearson Education
18

Hours v2 answer 1
// This program searches an input file of employees' hours worked

// for a particular employee and outputs that employee's hours data.

import java.io.*; // for File

import java.util.*; // for Scanner

public class HoursWorked {

public static void main(String[] args) throws FileNotFoundException {

Scanner console = new Scanner(System.in);

System.out.print("Enter an ID: ");

int searchId = console.nextInt(); // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));

String line = findPerson(input, searchId);

if (line.length() > 0) {

processLine(line);

} else {

System.out.println("ID #" + searchId + " was not found");

}

}

...

Copyright 2008 by Pearson Education
19

Hours v2 answer 2
// Locates and returns the line of data about a particular person.

public static String findPerson(Scanner input, int searchId) {

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

if (id == searchId) {

return line; // we found them!

}

}

return ""; // not found, so return an empty line

}

// Totals the hours worked by the person and outputs their info.

public static void processLine(String line) {

Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); // e.g. 456

String name = lineScan.next(); // e.g. "Brad"

double hours = 0.0;

int days = 0;

while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();

days++;

}

System.out.println(name + " worked " + hours + " hours ("

+ (hours / days) + " hours/day)");

}

}

Copyright 2008 by Pearson Education
20

IMDb movies problem
 Consider the following Internet Movie Database (IMDb) data:

1 9.1 196376 The Shawshank Redemption (1994)

2 9.0 139085 The Godfather: Part II (1974)

3 8.8 81507 Casablanca (1942)

 Write a program that displays any movies containing a phrase:

Search word? part

Rank Votes Rating Title

2 139085 9.0 The Godfather: Part II (1974)

40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)

192 30587 8.0 Spartacus (1960)

4 matches.

 Is this a token or line-based problem?

Copyright 2008 by Pearson Education
21

"Chaining"
 main should be a concise summary of your program.

 It is bad if each method calls the next without ever returning
(we call this chaining):

 A better structure has main make most of the calls.

 Methods must return values to main to be passed on later.

main
methodA

methodB
methodC

methodD

main
methodA

methodB
methodC

methodD

Copyright 2008 by Pearson Education
22

Bad IMDb "chained" code 1
// Displays IMDB's Top 250 movies that match a search string.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Movies {

public static void main(String[] args) throws FileNotFoundException {

getWord();

}

// Asks the user for their search word and returns it.

public static void getWord() throws FileNotFoundException {

System.out.print("Search word: ");

Scanner console = new Scanner(System.in);

String searchWord = console.next();

searchWord = searchWord.toLowerCase();

System.out.println();

Scanner input = new Scanner(new File("imdb.txt"));

search(input, searchWord);

}

...

Copyright 2008 by Pearson Education
23

Bad IMDb "chained" code 2
...

// Breaks apart each line, looking for lines that match the search word.
public static String search(Scanner input, String searchWord) {

int matches = 0;

while (input.hasNextLine()) {

String line = input.nextLine();

String lineLC = line.toLowerCase(); // case-insensitive match
if (lineLC.indexOf(searchWord) >= 0) {

matches++;

System.out.println("Rank\tVotes\tRating\tTitle");

display(line);
}

}

System.out.println(matches + " matches.");

}

// Displays the line in the proper format on the screen.
public static void display(String line) {

Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();

double rating = lineScan.nextDouble();

int votes = lineScan.nextInt();

String title = "";

while (lineScan.hasNext()) {

title += lineScan.next() + " "; // the rest of the line
}

System.out.println(rank + "\t" + votes + "\t" + rating + "\t" + title);

}

}

Copyright 2008 by Pearson Education
24

Better IMDb answer 1
// Displays IMDB's Top 250 movies that match a search string.

import java.io.*; // for File

import java.util.*; // for Scanner

public class Movies {

public static void main(String[] args) throws FileNotFoundException {

String searchWord = getWord();

Scanner input = new Scanner(new File("imdb.txt"));

String line = search(input, searchWord);

if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");

while (line.length() > 0) {

display(line);

line = search(input, searchWord);

}

}

System.out.println(matches + " matches.");

}

// Asks the user for their search word and returns it.

public static String getWord() {

System.out.print("Search word: ");

Scanner console = new Scanner(System.in);

String searchWord = console.next();

searchWord = searchWord.toLowerCase();

System.out.println();

return searchWord;

}

...

Copyright 2008 by Pearson Education
25

Better IMDb answer 2
...

// Breaks apart each line, looking for lines that match the search word.

public static String search(Scanner input, String searchWord) {

while (input.hasNextLine()) {

String line = input.nextLine();

String lineLC = line.toLowerCase(); // case-insensitive match

if (lineLC.indexOf(searchWord) >= 0) {

return line;

}

}

return ""; // not found

}

// Displays the line in the proper format on the screen.

public static void display(String line) {

Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();

double rating = lineScan.nextDouble();

int votes = lineScan.nextInt();

String title = "";

while (lineScan.hasNext()) {

title += lineScan.next() + " "; // the rest of the line

}

System.out.println(rank + "\t" + votes + "\t" + rating + "\t" + title);

}

}

Copyright 2008 by Pearson Education
26

Graphical IMDB problem
 Turn our IMDb code into a graphical program.

 top-left 0.0 tick mark at (0, 20)

 ticks 10px tall, 50px apart

 first blue bar top/left corner at (0, 70)

 bars 50px tall

 bars 50px wide per rating point

 bars 100px apart vertically

Copyright 2008 by Pearson Education
27

Mixing graphics and text
 When mixing text/graphics, solve the problem in pieces.

Do the text and file I/O first:

 Display any welcome message and initial console input.

 Open the input file and print some file data.

(Perhaps print every line, the first token of each line, etc.)

 Search the input file for the proper line record(s).

Lastly, add the graphical output:

 Draw any fixed graphics that do not depend on the file data.

 Draw the graphics that do depend on the search result.

Copyright 2008 by Pearson Education
28

Graphical IMDb answer 1
// Displays IMDB's Top 250 movies that match a search string.
import java.awt.*; // for Graphics
import java.io.*; // for File
import java.util.*; // for Scanner

public class Movies2 {
public static void main(String[] args) throws FileNotFoundException {

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");
Graphics g = createWindow();
while (line.length() > 0) {

matches++;
display(g, line, matches);
line = search(input, searchWord);

}
}

System.out.println(matches + " matches.");
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
...

Copyright 2008 by Pearson Education
29

Graphical IMDb answer 2
...

// Breaks apart each line, looking for lines that match the search word.
public static String search(Scanner input, String searchWord) {

while (input.hasNextLine()) {

String line = input.nextLine();

String lineLC = line.toLowerCase(); // case-insensitive match
if (lineLC.indexOf(searchWord) >= 0) {

return line;

}

}

return ""; // not found
}

// Displays the line in the proper format on the screen.
public static void display(Graphics g, String line, int matches) {

Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();

double rating = lineScan.nextDouble();

int votes = lineScan.nextInt();

String title = "";

while (lineScan.hasNext()) {

title += lineScan.next() + " "; // the rest of the line
}

System.out.println(rank + "\t" + votes + "\t" + rating + "\t" + title);

drawBar(g, matches, title, rank, rating);
}

...

Copyright 2008 by Pearson Education
30

Graphical IMDb answer 3
...

// Creates a drawing panel and draws all fixed graphics.
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);

Graphics g = panel.getGraphics();

for (int i = 0; i <= 10; i++) { // draw tick marks
int x = i * 50;

g.drawLine(x, 20, x, 30);

g.drawString(i + ".0", x, 20);

}

return g;

}

// Draws one red bar representing a movie's votes and ranking.
public static void drawBar(Graphics g, int matches, String title,

int rank, double rating) {

int y = 70 + 100 * (matches - 1);

int w = (int) (rating * 50);

int h = 50;

g.setColor(Color.BLUE); // draw the blue bar for that movie
g.fillRect(0, y, w, h);

g.setColor(Color.BLACK);

g.drawString("#" + rank + ": " + title, 0, y);

}

}

Copyright 2008 by Pearson Education
31

Mixing tokens and lines
 Using nextLine in conjunction with the token-based

methods on the same Scanner can cause bad results.

23 3.14

Joe "Hello world"

45.2 19

 You'd think you could read 23 and 3.14 with nextInt and

nextDouble, then read Joe "Hello world" with nextLine .

System.out.println(input.nextInt()); // 23

System.out.println(input.nextDouble()); // 3.14

System.out.println(input.nextLine()); //

 But the nextLine call produces no output! Why?

Copyright 2008 by Pearson Education
32

Mixing lines and tokens
 Don't read both tokens and lines from the same Scanner:

23 3.14

Joe "Hello world"

45.2 19

input.nextInt() // 23

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextDouble() // 3.14

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "" (empty!)

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "Joe\t\"Hello world\""

23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

Copyright 2008 by Pearson Education
33

Line-and-token example
Scanner console = new Scanner(System.in);

System.out.print("Enter your age: ");

int age = console.nextInt();

System.out.print("Now enter your name: ");

String name = console.nextLine();

System.out.println(name + " is " + age + " years old.");

Log of execution (user input underlined):

Enter your age: 12

Now enter your name: Sideshow Bob

is 12 years old.

 Why?
 Overall input: 12\nSideshow Bob

 After nextInt(): 12\nSideshow Bob
^

 After nextLine(): 12\nSideshow Bob
^

