
Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops

reading: 4.1, 5.1

self-check: Ch. 4 #2; Ch. 5 # 1-10

exercises: Ch. 4 #2, 4, 5, 8; Ch. 5 # 1-2

Copyright 2008 by Pearson Education
2

A deceptive problem...
� Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:

printNumbers(5)

should print:

1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
3

Flawed solutions
� public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", ");

}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5): 1, 2, 3, 4, 5,

� public static void printNumbers(int max) {
for (int i = 1; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line of output

}

� Output from printNumbers(5): , 1, 2, 3, 4, 5

Copyright 2008 by Pearson Education
4

Fence post analogy
� We print n numbers but need only n - 1 commas.

� Similar to building a fence with wires separated by posts:

� If we repeatedly place a post + wire,

the last post will have an extra dangling wire.

� A flawed algorithm:

for (length of fence) {

place a post.

place some wire.

}

Copyright 2008 by Pearson Education
5

Fencepost loop
� Add a statement outside the loop to place the initial "post."

� Also called a fencepost loop or a "loop-and-a-half" solution.

� The revised algorithm:

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}

Copyright 2008 by Pearson Education
6

Fencepost method solution
public static void printNumbers(int max) {

System.out.print(1);
for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line

}

� Alternate solution: Either first or last "post" can be taken out:

public static void printNumbers(int max) {
for (int i = 1; i <= max - 1 ; i++) {

System.out.print(i + ", ");
}
System.out.println(max); // to end the line

}

Copyright 2008 by Pearson Education
7

Fencepost question
� Write a method printPrimes that prints all prime numbers

up to a given maximum in the following format.

� Example: printPrimes(50) prints

[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

� To find primes, write a method countFactors which

returns the number of factors of an integer.
� countFactors(60) returns 12 because

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

Copyright 2008 by Pearson Education
8

Fencepost answer
public class Primes {

public static void main(String[] args) {
printPrimes(50);
printPrimes(1000);

}

// Prints all prime numbers up to the given max.
public static void printPrimes(int max) {

System.out.print("[2");
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {
System.out.print(" " + i);

}
}
System.out.println("]");

}

Copyright 2008 by Pearson Education
9

Fencepost answer, continued
// Returns how many factors the given number has.
// Note: this is also in ch04-1 slides
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of number

}
}
return count;

}
}

Copyright 2008 by Pearson Education
10

while loops

reading: 5.1

self-check: 1 - 10

exercises: 1 - 2

Copyright 2008 by Pearson Education
11

Categories of loops
� definite loop: Executes a known number of times.

� The for loops we have seen are definite loops.

� Examples:

� Print "hello" 10 times.

� Find all the prime numbers up to an integer n.

� Print each odd number between 5 and 127.

� indefinite loop: One where the number of times its body
repeats is not known in advance.

� Examples:

� Prompt the user until they type a non-negative number.

� Print random numbers until a prime number is printed.

� Repeat until the user has types "q" to quit.

Copyright 2008 by Pearson Education
12

The while loop
� while loop: Repeatedly executes its

body as long as a logical test is true.

while (test) {

statement(s);
}

� Example:
int num = 1; // initialization
while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

� OUTPUT:

1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education
13

Example while loop
// finds a number's first factor other than 1
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

� Example log of execution:

Type a number: 91
First factor: 7

� while is better than for here because we don't know how
many times we will need to increment to find the factor.

Copyright 2008 by Pearson Education
14

for vs. while loops

� The for loop is just a specialized form of the while loop.

� The following loops are equivalent:

for (int num = 1; num <= 200; num = num * 2) {
System.out.print(num + " ");

}

// actually, not a very compelling use of a while l oop

// (a for loop is better because the # of reps is d efinite)

int num = 1;

while (num <= 200) {

System.out.print(num + " ");

num = num * 2;

}

Copyright 2008 by Pearson Education
15

while and Scanner
� while loops are often used with Scanner input.

� You don't know many times you'll need to re-prompt the user
if they type bad data. (an indefinite loop!)

� Write code that repeatedly prompts until the user types a
non-negative number, then computes its square root.

� Example log of execution:

Type a non-negative integer: -5
Invalid number, try again: -1
Invalid number, try again: -235
Invalid number, try again: -87
Invalid number, try again: 121
The square root of 121 is 11.0

Copyright 2008 by Pearson Education
16

while loop answer
System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

System.out.println("The square root of " + number +
" is " + Math.sqrt(number));

� Notice that number has to be declared outside the loop.

Copyright 2008 by Pearson Education
17

Sentinel loops

reading: 5.1

self-check: 5

exercises: 1, 2

videos: Ch. 5 #4

Copyright 2008 by Pearson Education
18

� sentinel: A value that signals the end of user input.

� sentinel loop: Repeats until a sentinel value is seen.

� Example: A program that repeatedly prompts the user for
numbers until the user types -1, then outputs their sum.

� (In this case, -1 is the sentinel value.)

Enter a number (-1 to quit): 10
Enter a number (-1 to quit): 25
Enter a number (-1 to quit): 35
Enter a number (-1 to quit): -1
The sum is 70

Sentinel values

Copyright 2008 by Pearson Education
19

� Exercise: Write a program that repeatedly prompts the
user for words until the user types "goodbye", then outputs
the longest word that was typed.

� (In this case, "goodbye" is the sentinel value.)

Type a word (or "goodbye" to quit): Obama
Type a word (or "goodbye" to quit): McCain
Type a word (or "goodbye" to quit): Biden
Type a word (or "goodbye" to quit): Palin
Type a word (or "goodbye" to quit): goodbye
The longest word you typed was "McCain" (6 letters)

A second sentinel problem

Copyright 2008 by Pearson Education
20

Flawed sentinel solution
� What's wrong with this solution?

Scanner console = new Scanner(System.in);
String longest = "";
String word = ""; // "dummy value"; anything but "goodbye"

while (!word.equals("goodbye")) {
System.out.print("Type a word (or \"goodbye\" to quit): ");
word = console.next();
if (word.length() > longest.length()) {

longest = word;
}

}

System.out.println("The longest word you typed was \"" +
longest + "\" (" + longest.length() + " letters)");

� The solution produces the wrong output!
The longest word you typed was "goodbye" (7 letters)

Copyright 2008 by Pearson Education
21

The problem
� Our code uses a pattern like this:

longest = empty string.

while (input is not the sentinel) {

prompt for input; read input.

check if input is longest; if so, store it.

}

� On the last pass, the sentinel is added to the sum:

prompt for input; read input ("goodbye").

check if input is longest; if so, store it.

� This is a fencepost problem.

� We must read N words, but only process the first N-1 of them.

Copyright 2008 by Pearson Education
22

A fencepost solution
� We need to use a pattern like this:

longest = empty string.

prompt for input; read input. // place 1st "post"

while (input is not the sentinel) {

check if input is longest; if so, store it. // place a "wire"

prompt for input; read input. // place a "post"

}

� Sentinel loops often utilize a fencepost "loop-and-a-half"

solution by pulling some code out of the loop.

Copyright 2008 by Pearson Education
23

Correct code
� This solution produces the correct output:

Scanner console = new Scanner(System.in);
String longest = "";

// moved one "post" out of loop
System.out.print("Type a word (or \"goodbye\" to qui t): ");
String word = console.next();

while (!word.equals("goodbye")) {
if (word.length() > longest.length()) {

longest = word; // moved to top of loop
}
System.out.print("Type a word (or \"goodbye\" to quit): ");
word = console.next();

}

System.out.println("The longest word you typed was \"" +
longest + "\" (" + longest.length() + " letters)");

Copyright 2008 by Pearson Education
24

Constant with sentinel
� A better solution uses a constant for the sentinel:

public static final String SENTINEL = "goodbye";

� This solution uses the constant:
Scanner console = new Scanner(System.in);
System.out.print("Type a word (or \"" + SENTINEL + "\" to quit): ");
String word = console.next();
String longest = "";

while (!word.equals(SENTINEL)) {
if (word.length() > longest.length()) {

longest = word; // moved to top of loop
}
System.out.print("Type a word (or \"" + SENTINEL + "\" to quit): ");
word = console.next();

}

System.out.println("The longest word you typed was \"" +
longest + "\" (" + longest.length() + " letters)");

Copyright 2008 by Pearson Education
25

Sentinel number problem
� Solution to the "sum numbers until -1 is typed" problem:

Scanner console = new Scanner(System.in);
int sum = 0;
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();

while (number != -1) {
sum = sum + number; // moved to top of loop
System.out.print("Enter a number (-1 to quit): ");
number = console.nextInt();

}

System.out.println("The sum is " + sum);

Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-2: Random Numbers

reading: 5.1 - 5.2

self-check: #8 - 17

exercises: #3 - 6, 10, 12

videos: Ch. 5 #1-2

Copyright 2008 by Pearson Education
2

The Random class

� A Random object generates pseudo-random* numbers.

� Class Random is found in the java.util package.

import java.util.*;

� Example:

Random rand = new Random();
int randomNumber = rand.nextInt(10); // 0-9

Method name Description

nextInt() returns a random integer

nextInt(max) returns a random integer in the range [0, max)

in other words, 0 to max-1 inclusive

nextDouble() returns a random real number in the range [0.0, 1.0)

Copyright 2008 by Pearson Education
3

Generating random numbers
� Common usage: to get a random number from 1 to N

int n = rand.nextInt(20) + 1; // 1-20 inclusive

� To get a number in arbitrary range [min, max] inclusive:

nextInt(size of range) + min

� where (size of range) is (max - min + 1)

� Example: A random integer between 4 and 10 inclusive:

int n = rand.nextInt(7) + 4;

Copyright 2008 by Pearson Education
4

Random questions

� Given the following declaration, how would you get:

Random rand = new Random();

� A random number between 1 and 100 inclusive?

int random1 = rand.nextInt(100) + 1;

� A random number between 50 and 100 inclusive?

int random2 = rand.nextInt(51) + 50;

� A random number between 4 and 17 inclusive?

int random3 = rand.nextInt(14) + 4;

Copyright 2008 by Pearson Education
5

Random and other types

� nextDouble method returns a double between 0.0 - 1.0

� Example: Get a random GPA value between 1.5 and 4.0:

double randomGpa = rand.nextDouble() * 2.5 + 1.5;

� Any set of possible values can be mapped to integers

� code to randomly play Rock-Paper-Scissors:

int r = rand.nextInt(3);
if (r == 0) {

System.out.println("Rock");
} else if (r == 1) {

System.out.println("Paper");
} else {

System.out.println("Scissors");
}

Copyright 2008 by Pearson Education
6

Random question

� Write a program that simulates rolling of two 6-sided dice
until their combined result comes up as 7.

2 + 4 = 6

3 + 5 = 8

5 + 6 = 11
1 + 1 = 2

4 + 3 = 7

You won after 5 tries!

� Modify the program to play 3 dice games using a method.

Copyright 2008 by Pearson Education
7

Random answer
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Dice {
public static void main(String[] args) {

Random rand = new Random();
int tries = 0;

int sum = 0;
while (sum != 7) {

// roll the dice once
int roll1 = rand.nextInt(6) + 1;
int roll2 = rand.nextInt(6) + 1;
sum = roll1 + roll2;
System.out.println(roll1 + " + " + roll2 + " = " + sum);
tries++;

}

System.out.println("You won after " + tries + " tries!");
}

}

Copyright 2008 by Pearson Education
8

Random question

�Write a multiplication tutor program.

� Ask user to solve problems with random numbers
from 1-20.

� The program stops after an incorrect answer.

14 * 8 = 112
Correct!
5 * 12 = 60
Correct!
8 * 3 = 24
Correct!
5 * 5 = 25
Correct!
20 * 14 = 280
Correct!
19 * 14 = 256
Incorrect; the answer was 266

You solved 5 correctly
Last correct answer was 280

Copyright 2008 by Pearson Education
9

Random answer
import java.util.*;

// Asks the user to do multiplication problems and scores them.
public class MultiplicationTutor {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
Random rand = new Random();

// fencepost solution - pull first question outside of loop
int correct = 0;
int last = askQuestion(console, rand);
int lastCorrect = 0;

// loop until user gets one wrong
while (last > 0) {

lastCorrect = last;
correct++;
last = askQuestion(console, rand);

}

System.out.println("You solved " + correct + " correctly");
if (correct > 0) {

System.out.println("Last correct answer was " + lastCorrect);
}

}
...

Copyright 2008 by Pearson Education
10

Random answer 2
...

// Asks the user one multiplication problem,
// returning the answer if they get it right and 0 if not.
public static int askQuestion(Scanner console, Random rand) {

// pick two random numbers between 1 and 20 inclusive
int num1 = rand.nextInt(20) + 1;
int num2 = rand.nextInt(20) + 1;

System.out.print(num1 + " * " + num2 + " = ");
int guess = console.nextInt();
if (guess == num1 * num2) {

System.out.println("Correct!");
return num1 * num2;

} else {
System.out.println("Incorrect; the correct answer was " +

(num1 * num2));
return 0;

}
}

}

Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5
Lecture 5-3: Boolean Logic

reading: 5.2

self-check: #11 - 17

exercises: #12

videos: Ch. 5 #2

Copyright 2008 by Pearson Education
2

while loop question

 Write a method named digitSum that accepts an integer as

a parameter and returns the sum of the digits of that
number.

 digitSum(29107) returns 2+9+1+0+7 or 19

 Assume that the number is non-negative.

 Hint: Use the % operator to extract a digit from a number.

Copyright 2008 by Pearson Education
3

while loop answer

 The following code implements the method:

public static int digitSum(int n) {

int sum = 0;

while (n > 0) {

sum = sum + (n % 10); // add last digit to sum

n = n / 10; // remove last digit

}

return sum;

}

Copyright 2008 by Pearson Education
4

Type boolean

 boolean: A logical type whose values are true and false.

 A test in an if, for, or while is a boolean expression.

 You can create boolean variables, pass boolean parameters,
return boolean values from methods, ...

boolean minor = (age < 21);

boolean expensive = iPhonePrice > 200.00;

boolean iLoveCS = true;

if (minor) {

System.out.println("Can't purchase alcohol!");

}

if (iLoveCS || !expensive) {

System.out.println("Buying an iPhone");

}

Copyright 2008 by Pearson Education
5

Methods that return boolean
 Methods can return boolean values.

 A call to such a method can be a loop or if test.

Scanner console = new Scanner(System.in);

System.out.print("Type your name: ");

String line = console.nextLine();

if (line.startsWith("Dr.")) {

System.out.println("Will you marry me?");

} else if (line.endsWith(", Esq.")) {

System.out.println("And I am Ted 'Theodore' Logan!");

}

Copyright 2008 by Pearson Education
6

De Morgan's Law
 De Morgan's Law:

Rules used to negate or reverse boolean expressions.

 Useful when you want the opposite of a known boolean test.

 Example:

Original Expression Negated Expression Alternative

a && b !a || !b !(a && b)

a || b !a && !b !(a || b)

Original Code Negated Code

if (x == 7 && y > 3) {

...

}

if (x != 7 || y <= 3) {

...

}

Copyright 2008 by Pearson Education
7

Writing boolean methods
public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;

} else {

return false;

}

}

 Calls to this methods can now be used as tests:

if (bothOdd(7, 13)) {

...

}

Copyright 2008 by Pearson Education
8

"Boolean Zen", part 1
 Students new to boolean often test if a result is true:

if (bothOdd(7, 13) == true) { // bad

...

}

 But this is unnecessary and redundant. Preferred:

if (bothOdd(7, 13)) { // good

...

}

 A similar pattern can be used for a false test:

if (bothOdd(7, 13) == false) { // bad

if (!bothOdd(7, 13)) { // good

Copyright 2008 by Pearson Education
9

"Boolean Zen", part 2
 Methods that return boolean often have an
if/else that returns true or false:

public static boolean bothOdd(int n1, int n2) {

if (n1 % 2 != 0 && n2 % 2 != 0) {

return true;

} else {

return false;

}

}

 But the code above is unnecessarily verbose.

Copyright 2008 by Pearson Education
10

Solution w/ boolean variable

 We could store the result of the logical test.

public static boolean bothOdd(int n1, int n2) {

boolean test = (n1 % 2 != 0 && n2 % 2 != 0);

if (test) { // test == true

return true;

} else { // test == false

return false;

}

}

 Notice: Whatever test is, we want to return that.

 If test is true , we want to return true.

 If test is false, we want to return false.

Copyright 2008 by Pearson Education
11

Solution w/ "Boolean Zen"
 Observation: The if/else is unnecessary.

 The variable test stores a boolean value;

its value is exactly what you want to return. So return that!

public static boolean bothOdd(int n1, int n2) {

boolean test = (n1 % 2 != 0 && n2 % 2 != 0);

return test;

}

 An even shorter version:

 We don't even need the variable test.

We can just perform the test and return its result in one step.

public static boolean bothOdd(int n1, int n2) {

return (n1 % 2 != 0 && n2 % 2 != 0);

}

Copyright 2008 by Pearson Education
12

"Boolean Zen" template
 Replace

public static boolean name(parameters) {
if (test) {

return true;

} else {

return false;

}

}

• with

public static boolean name(parameters) {
return test;

}

Copyright 2008 by Pearson Education
13

Boolean question
 Write a program that prompts the user for two words and

reports whether they "rhyme" (end with the same last two
letters) and/or "alliterate" (start with the same letter).

(run #1)
Type two words: car STAR

They rhyme!

(run #2)
Type two words: Bare blare

They rhyme!

They alliterate!

(run #3)
Type two words: booyah socks

They have nothing in common.

Copyright 2008 by Pearson Education
14

Boolean answer
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Type two words: ");

String word1 = console.next(); // Type two words: car STAR

String word2 = console.next(); // They rhyme!

if (rhyme(word1, word2)) {

System.out.println("They rhyme!");

}

if (alliterate(word1, word2)) {

System.out.println("They alliterate (start with the same letter)!");

}

}

// Returns true if s1 and s2 end with the same two letters.

public static boolean rhyme(String s1, String s2) {

return s2.length() >= 2 && s1.endsWith(s2.substring(s2.length() - 2));

}

// Returns true if s1 and s2 start with the same letter.

public static boolean alliterate(String s1, String s2) {

return s1.startsWith(s2.substring(0, 1));

}

Copyright 2008 by Pearson Education
15

Boolean practice questions
 Write a method named isVowel that returns whether a
String is a vowel (a, e, i, o, or u), case-insensitively.

 isVowel("q") returns false

 isVowel("A") returns true

 isVowel("e") returns true

 Change the above method into an isNonVowel that returns
whether a String is any character EXCEPT a vowel (a, e, i,

o, or u).

 isNonVowel("q") returns true

 isNonVowel("A") returns false

 isNonVowel("e") returns false

 Write methods named allVowels and containsVowel.

Copyright 2008 by Pearson Education
16

Boolean practice answers

public static boolean isVowel(String s) {

if (s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||

s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||

s.equalsIgnoreCase("u")) {

return true;

} else {

return false;

}

}

public static boolean isNonVowel(String s) {

if (!s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&

!s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&

!s.equalsIgnoreCase("u")) {

return true;

} else {

return false;

}

}

Copyright 2008 by Pearson Education
17

Boolean practice answers 2
// Enlightened version. I have seen the true way (and false way)

public static boolean isVowel(String s) {

return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||

s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||

s.equalsIgnoreCase("u");

}

// Enlightened version

public static boolean isNonVowel(String s) {

return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&

!s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&

!s.equalsIgnoreCase("u");

}

Copyright 2008 by Pearson Education
18

When to return?
 In methods that involve a loop and a boolean return:

 How do you figure out whether to return true or false?

 When should the method return its result?

 Example problem:

 Write a method seven that accepts a Random parameter and

uses it to pick up to 10 lotto numbers between 1 and 30.

 The method should print each number as it is drawn.

 Example output from 2 calls:

15 29 18 29 11 3 30 17 19 22

29 5 29 16 4 7

 If any of the numbers is a lucky 7, the method should return
true. Otherwise, it should return false.

Copyright 2008 by Pearson Education
19

Flawed solution
 Common incorrect solution:

// Draws 10 random lotto numbers.

// Returns true if one of them is a lucky 7.

public static boolean seven(Random rand) {

for (int i = 1; i <= 10; i++) {

int num = rand.nextInt(30) + 1;

System.out.print(num + " ");

if (num == 7) {

return true;

} else {

return false;

}

}

}

 The method tries to return immediately after the first roll.

 This is bad, if that roll isn't a 7; we need to roll all 10 times to
see if any of them is a 7.

Copyright 2008 by Pearson Education
20

Returning at the right time
 Corrected code:

// Draws 10 random lotto numbers.

// Returns true if one of them is a lucky 7.

public static boolean seven(Random rand) {

for (int i = 1; i <= 10; i++) {

int num = rand.nextInt(30) + 1;

System.out.print(num + " ");

if (num == 7) { // found lucky 7; can exit now

return true;

}

}

// if we get here, we know there was no 7

return false;

}

 Returns immediately if 7 is found, because the answer must be
true. If 7 isn't found, we draw the next lotto number.
If all 10 aren't 7, the loop ends and we return false.

Copyright 2008 by Pearson Education
21

Boolean return questions
 Write a method named hasAnOddDigit that returns

whether any digit of a positive integer is odd.

 hasAnOddDigit(4822116) returns true

 hasAnOddDigit(2448) returns false

 Write a method named allDigitsOdd that returns whether

every digit of a positive integer is odd.

 allDigitsOdd(135319) returns true

 allDigitsOdd(9175293) returns false

 Write a method named isAllVowels that returns true if
every character in a String is a vowel, else false.

 isAllVowels("eIeIo") returns true

 isAllVowels("oink") returns false

Copyright 2008 by Pearson Education
22

Boolean return answers
public static boolean hasAnOddDigit(int n) {

while (n > 0) {
if (n % 2 != 0) { // check whether last digit is odd

return true;
}
n = n / 10;

}
return false;

}

public static boolean allDigitsOdd(int n) {
while (n > 0) {

if (n % 2 == 0) { // check whether last digit is even
return false;

}
n = n / 10;

}
return true;

}

public static boolean isAllVowels(String s) {
for (int i = 0; i < s.length(); i++) {

String letter = s.substring(i, i + 1);
if (!isVowel(letter)) {

return false;
}

}
return true;

}

Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 5

Lecture 5-3: Assertions, do/while loops

reading: 5.4 - 5.5

self-check: 22-24, 26-28

Copyright 2008 by Pearson Education
2

Logical assertions
� assertion: A statement that is either true or false.

Examples:

� Java was created in 1995.

� The sky is purple.

� 23 is a prime number.

� 10 is greater than 20.

� x divided by 2 equals 7. (depends on the value of x)

� An assertion might be false ("The sky is purple" above), but
it is still an assertion because it is a true/false statement.

Copyright 2008 by Pearson Education
3

Reasoning about assertions
� Suppose you have the following code:

if (x > 3) {
// Point A
x--;

} else {
// Point B
x++;

}
// Point C

� What do you know about x's value at the three points?

� Is x > 3? Always? Sometimes? Never?

Copyright 2008 by Pearson Education
4

Assertions in code
� We can make assertions about our code and ask whether they

are true at various points in the code.
� Valid answers are ALWAYS, NEVER, or SOMETIMES.

System.out.print("Type a nonnegative number: ");
double number = console.nextDouble();
// Point A: is number < 0.0 here?

while (number < 0.0) {
// Point B: is number < 0.0 here?
System.out.print("Negative; try again: ");

number = console.nextDouble();
// Point C: is number < 0.0 here?

}

// Point D: is number < 0.0 here?

(SOMETIMES)

(ALWAYS)

(SOMETIMES)

(NEVER)

Copyright 2008 by Pearson Education
5

Reasoning about assertions
� Right after a variable is initialized, its value is known:

int x = 3;
// is x > 0? ALWAYS

� In general you know nothing about parameters' values:
public static void mystery(int a, int b) {
// is a == 10? SOMETIMES

� But inside an if, while, etc., you may know something:
public static void mystery(int a, int b) {

if (a < 0) {
// is a == 10? NEVER
...

}
}

Copyright 2008 by Pearson Education
6

Assertions and loops
� At the start of a loop's body, the loop's test must be true:

while (y < 10) {
// is y < 10? ALWAYS
...

}

� After a loop, the loop's test must be false:
while (y < 10) {

...
}
// is y < 10? NEVER

� Inside a loop's body, the loop's test may become false:
while (y < 10) {

y++;
// is y < 10? SOMETIMES

}

Copyright 2008 by Pearson Education
7

"Sometimes"
� Things that cause a variable's value to be unknown

(often leads to "sometimes" answers):

� reading from a Scanner

� reading a number from a Random object

� a parameter's initial value to a method

� If you can reach a part of the program both with the
answer being "yes" and the answer being "no", then the
correct answer is "sometimes".

� If you're unsure, "Sometimes" is a good guess.

� Often around 1/2 of the correct answers are "sometimes."

Copyright 2008 by Pearson Education
8

Assertion example 1
public static void mystery(int x, int y) {

int z = 0;

// Point A
while (x >= y) {

// Point B
x = x - y;

// Point C
z++;

// Point D
}

// Point E
System.out.println(z);

}

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

SOMETIMES SOMETIMES ALWAYS

NEVER SOMETIMES SOMETIMES

SOMETIMES SOMETIMES SOMETIMES

SOMETIMES SOMETIMES NEVER

ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
9

Assertion example 2
public static int mystery(Scanner console) {

int prev = 0;
int count = 0;
int next = console.nextInt();
// Point A
while (next != 0) {

// Point B
if (next == prev) {

// Point C
count++;

}
prev = next;
next = console.nextInt();
// Point D

}
// Point E
return count;

}

next == 0 prev == 0 next == prev

Point A

Point B

Point C

Point D

Point E

SOMETIMES ALWAYS SOMETIMES

NEVER SOMETIMES SOMETIMES

NEVER NEVER ALWAYS

SOMETIMES NEVER SOMETIMES

ALWAYS SOMETIMES SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Copyright 2008 by Pearson Education
10

Assertion example 3
// Assumes y >= 0, and returns x^y
public static int pow(int x, int y) {

int prod = 1;

// Point A
while (y > 0) {

// Point B
if (y % 2 == 0) {

// Point C
x = x * x;
y = y / 2;
// Point D

} else {
// Point E
prod = prod * x;
y--;
// Point F

}
}
// Point G
return prod;

}

y > 0 y % 2 == 0

Point A

Point B

Point C

Point D

Point E

Point F

Point G

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

y > 0 y % 2 == 0

Point A SOMETIMES SOMETIMES

Point B ALWAYS SOMETIMES

Point C ALWAYS ALWAYS

Point D ALWAYS SOMETIMES

Point E ALWAYS NEVER

Point F SOMETIMES ALWAYS

Point G NEVER ALWAYS

Copyright 2008 by Pearson Education
11

while loop variations

reading: 5.4

self-checks: #22-24

exercises: #6

Copyright 2008 by Pearson Education
12

The do/while loop

� do/while loop: Executes statements repeatedly while a

condition is true, testing it at the end of each repetition.

do {
statement(s);

} while (test);

� Example:

// prompt until the user gets the right password
String phrase;
do {

System.out.print("Password: ");
phrase = console.next();

} while (!phrase.equals("abracadabra"));

Copyright 2008 by Pearson Education
13

do/while flow chart

� How does this differ from the while loop?

� The controlled statement(s) will always execute the first
time, regardless of whether the test is true or false.

Copyright 2008 by Pearson Education
14

do/while question

� Modify the previous Dice program to use do/while.

� Example log of execution:

2 + 4 = 6
3 + 5 = 8
5 + 6 = 11
1 + 1 = 2
4 + 3 = 7
You won after 5 tries!

� Modify the previous Sentinel program to use do/while.
� Is do/while a good fit for solving this problem?

Copyright 2008 by Pearson Education
15

do/while answer
// Rolls two dice until a sum of 7 is reached.
import java.util.*;

public class Dice {
public static void main(String[] args) {

Random rand = new Random();
int tries = 0;
int sum;
do {

int roll1 = rand.nextInt(6) + 1;
int roll2 = rand.nextInt(6) + 1;
sum = roll1 + roll2;
System.out.println(roll1 + " + " + roll2 + " = " + sum);
tries++;

} while (sum != 7);

System.out.println("You won after " + tries + " tries!");
}

}

Copyright 2008 by Pearson Education
16

break
� break statement: Immediately exits a loop.

� Can be used to write a loop whose test is in the middle.

� Such loops are often called "forever" loops because their
header's boolean test is often changed to a trivial true.

while (true) {
statement(s);

if (test) {
break;

}

statement(s);
}

� break is bad style! Do not use it on CSE 142 homework.

Copyright 2008 by Pearson Education
17

Sentinel loop with break
� A working sentinel loop solution using break:

Scanner console = new Scanner(System.in);
int sum = 0;
while (true) {

System.out.print("Enter a number (-1 to quit): ");
int number = console.nextInt();
if (number == -1) { // don't add -1 to sum

break;
}
sum = sum + number; // number != -1 here

}

System.out.println("The total was " + sum);

