
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 3

Lecture 3-1: Parameters

reading: 3.1

Copyright 2008 by Pearson Education
2

Redundant recipes
 Recipe for baking 20 cookies:

 Mix the following ingredients in a bowl:
 4 cups flour
 1 cup butter
 1 cup sugar
 2 eggs
 1 bag chocolate chips ...

 Place on sheet and Bake for about 10 minutes.

 Recipe for baking 40 cookies:

 Mix the following ingredients in a bowl:
 8 cups flour
 2 cups butter
 2 cups sugar
 4 eggs
 2 bags chocolate chips ...

 Place on sheet and Bake for about 10 minutes.

Copyright 2008 by Pearson Education
3

Parameterized recipe
 Recipe for baking 20 cookies:

 Mix the following ingredients in a bowl:
 4 cups flour
 1 cup sugar
 2 eggs
 ...

 Recipe for baking N cookies:

 Mix the following ingredients in a bowl:
 N/5 cups flour
 N/20 cups butter
 N/20 cups sugar
 N/10 eggs
 N/20 bags chocolate chips ...

 Place on sheet and Bake for about 10 minutes.

 parameter: A value that distinguishes similar tasks.

Copyright 2008 by Pearson Education
4

Redundant figures
 Consider the task of printing the following lines/boxes:

* *

* *

* *

Copyright 2008 by Pearson Education
5

A redundant solution
public class Stars1 {

public static void main(String[] args) {
lineOf13();
lineOf7();
lineOf35();
box10x3();
box5x4();

}

public static void lineOf13() {
for (int i = 1; i <= 13; i++) {

System.out.print("*");
}
System.out.println();

}

public static void lineOf7() {
for (int i = 1; i <= 7; i++) {

System.out.print("*");
}
System.out.println();

}

public static void lineOf35() {
for (int i = 1; i <= 35; i++) {

System.out.print("*");
}
System.out.println();

}
...

 This code is redundant.

 Would variables help?
Would constants help?

 What is a better solution?

 line - A method to draw a

line of any number of stars.

 box - A method to draw a

box of any size.

Copyright 2008 by Pearson Education
6

Parameterization
 parameter: A value passed to a method by its caller.

 Instead of lineOf7, lineOf13, write line to draw any length.

 When declaring the method, we will state that it requires a

parameter for the number of stars.

 When calling the method, we will specify how many stars to draw.

main line *******
7

line *************13

Copyright 2008 by Pearson Education
7

Declaring a parameter
Stating that a method requires a parameter in order to run

public static void name (type name) {

statement(s);

}

 Example:
public static void sayPassword(int code) {

System.out.println("The password is: " + code);

}

 When sayPassword is called, the caller must specify

the integer code to print.

Copyright 2008 by Pearson Education
8

Passing parameters
Calling a method and specifying values for its parameters

name (expression);

 Example:

public static void main(String[] args) {

sayPassword(42);

sayPassword(12345);

}

Output:

The password is 42

The password is 12345

Copyright 2008 by Pearson Education
9

Parameters and loops
 A parameter can guide the number of repetitions of a loop.

public static void main(String[] args) {

chant(3);

}

public static void chant(int times) {

for (int i = 1; i <= times; i++) {

System.out.println("Just a salad...");

}

}

Output:
Just a salad...

Just a salad...

Just a salad...

Copyright 2008 by Pearson Education
10

How parameters are passed
 When the method is called:

 The value is stored into the parameter variable.

 The method's code executes using that value.

public static void main(String[] args) {

chant(3);

chant(7);

}

public static void chant(int times) {

for (int i = 1; i <= times; i++) {

System.out.println("Just a salad...");

}

}

37

Copyright 2008 by Pearson Education
11

Common errors
 If a method accepts a parameter, it is illegal to call it

without passing any value for that parameter.

chant(); // ERROR: parameter value required

 The value passed to a method must be of the correct type.

chant(3.7); // ERROR: must be of type int

 Exercise: Change the Stars program to use a
parameterized method for drawing lines of stars.

Copyright 2008 by Pearson Education
12

Stars solution
// Prints several lines of stars.

// Uses a parameterized method to remove redundancy.

public class Stars2 {

public static void main(String[] args) {

line(13);

line(7);

line(35);

}

// Prints the given number of stars plus a line break.

public static void line(int count) {

for (int i = 1; i <= count; i++) {

System.out.print("*");

}

System.out.println();

}

}

Copyright 2008 by Pearson Education
13

Multiple parameters
 A method can accept multiple parameters. (separate by ,)

 When calling it, you must pass values for each parameter.

 Declaration:

public static void name (type name, ..., type name) {

statement(s);

}

 Call:
methodName (value, value, ..., value);

Copyright 2008 by Pearson Education
14

Multiple parameters example
public static void main(String[] args) {

printNumber(4, 9);

printNumber(17, 6);

printNumber(8, 0);

printNumber(0, 8);

}

public static void printNumber(int number, int count) {

for (int i = 1; i <= count; i++) {

System.out.print(number);

}

System.out.println();

}

Output:

444444444
171717171717

00000000

 Modify the Stars program to draw boxes with parameters.

Copyright 2008 by Pearson Education
15

Stars solution
// Prints several lines and boxes made of stars.

// Third version with multiple parameterized methods.

public class Stars3 {

public static void main(String[] args) {

line(13);

line(7);

line(35);

System.out.println();

box(10, 3);

box(5, 4);

box(20, 7);

}

// Prints the given number of stars plus a line break.

public static void line(int count) {

for (int i = 1; i <= count; i++) {

System.out.print("*");

}

System.out.println();

}

...

Copyright 2008 by Pearson Education
16

Stars solution, cont'd.
...

// Prints a box of stars of the given size.

public static void box(int width, int height) {

line(width);

for (int line = 1; line <= height - 2; line++) {

System.out.print("*");

for (int space = 1; space <= width - 2; space++) {

System.out.print(" ");

}

System.out.println("*");

}

line(width);

}

}

Copyright 2008 by Pearson Education
17

A "Parameter Mystery" problem
public class ParameterMystery {

public static void main(String[] args) {

int x = 5;

int y = 9;

int z = 2;

mystery(z, y, x);

mystery(y, x, z);

}

public static void mystery(int x, int z, int y) {

System.out.println(z + " " + y + " " + x);

}

}

Copyright 2008 by Pearson Education
18

Strings
 string: A sequence of text characters.

String name = "text";

String name = expression;

 Examples:

String name = "Marla Singer";

int x = 3;

int y = 5;

String point = "(" + x + ", " + y + ")";

Copyright 2008 by Pearson Education
19

Strings as parameters
public class StringParameters {

public static void main(String[] args) {

String teacher = "Helene";

sayHello(teacher);

sayHello("Marty");

}

public static void sayHello(String name) {

System.out.println("Welcome, " + name);

}

}

Output:
Welcome, Helene

Welcome, Marty

 Modify the Stars program to use string parameters. Use a
method named repeat that prints a string many times.

Copyright 2008 by Pearson Education
20

Stars solution
// Prints several lines and boxes made of stars.

// Fourth version with String parameters.

public class Stars4 {

public static void main(String[] args) {

line(13);

line(7);

line(35);

System.out.println();

box(10, 3);

box(5, 4);

box(20, 7);

}

// Prints the given number of stars plus a line break.

public static void line(int count) {

repeat("*", count);

System.out.println();

}

...

Copyright 2008 by Pearson Education
21

Stars solution, cont'd.
...

// Prints a box of stars of the given size.

public static void box(int width, int height) {

line(width);

for (int line = 1; line <= height - 2; line++) {

System.out.print("*");

repeat(" ", width - 2);

System.out.println("*");

}

line(width);

}

// Prints the given String the given number of times.

public static void repeat(String s, int times) {

for (int i = 1; i <= times; i++) {

System.out.print(s);

}

}

}

Copyright 2008 by Pearson Education

Building Java Programs

Graphics

reading: Supplement 3G

videos: Ch. 3G #1-2

Copyright 2008 by Pearson Education
2

Graphical objects
We will draw graphics in Java using 3 kinds of objects:

� DrawingPanel: A window on the screen.

� Not part of Java; provided by the authors.

� Graphics: A "pen" to draw shapes/lines on a window.

� Color: Colors in which to draw shapes.

Copyright 2008 by Pearson Education
3

Objects (briefly)
� object: An entity that contains data and behavior.

� data: Variables inside the object.

� behavior: Methods inside the object.

� You interact with the methods; the data is hidden in the object.

� Constructing (creating) an object:

type objectName = new type(parameters);

� Calling an object's method:

objectName.methodName(parameters);

Copyright 2008 by Pearson Education
4

DrawingPanel
"Canvas" objects that represents windows/drawing surfaces

� To create a window:

DrawingPanel name = new DrawingPanel(width, height);

Example:

DrawingPanel panel = new DrawingPanel(300, 200);

� The window has nothing on it.

� We can draw shapes and lines
on it using another object of
type Graphics.

Copyright 2008 by Pearson Education
5

Graphics
"Pen" objects that can draw lines and shapes

� Access it by calling getGraphics on your DrawingPanel.

Graphics g = panel.getGraphics();

� Draw shapes by calling methods
on the Graphics object.

g.fillRect(10, 30, 60, 35);

g.fillOval(80, 40, 50, 70);

Copyright 2008 by Pearson Education
6

Java class libraries, import
� Java class libraries: Classes included with Java's JDK.

� organized into groups named packages

� To use a package, put an import declaration in your program.

� Syntax:

// put this at the very top of your program

import packageName.*;

� Graphics is in a package named java.awt

import java.awt.*;

� In order to use Graphics, you must place the above line at the
very top of your program, before the public class header.

Copyright 2008 by Pearson Education
7

Coordinate system
� Each (x, y) position is a pixel ("picture element").

� (0, 0) is at the window's top-left corner.

� x increases rightward and the y increases downward.

� The rectangle from (0, 0) to (200, 100) looks like this:

(0, 0) x+

(200, 100)

y+

Copyright 2008 by Pearson Education
8

Graphics methods

text with bottom-left at (x, y)g.drawString(text, x, y);

outline largest oval that fits in a box of
size width * height with top-left at (x, y)

g.drawOval(x, y, width, height);

fill largest oval that fits in a box of size
width * height with top-left at (x, y)

g.fillOval(x, y, width, height);

set Graphics to paint any following

shapes in the given color

g.setColor(Color);

fill rectangle of size width * height
with top-left at (x, y)

g.fillRect(x, y, width, height);

outline of rectangle of size
width * height with top-left at (x, y)

g.drawRect(x, y, width, height);

line between points (x1, y1), (x2, y2)g.drawLine(x1, y1, x2, y2);

DescriptionMethod name

Copyright 2008 by Pearson Education
9

Color
� Create one using Red-Green-Blue (RGB) values from 0-255

Color name = new Color(red, green, blue);

� Example:

Color brown = new Color(192, 128, 64);

� Or use a predefined Color class constant (more common)

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:

� BLACK, BLUE, CYAN, DARK_GRAY, GRAY,

GREEN, LIGHT_GRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, or YELLOW

Copyright 2008 by Pearson Education
10

Using Colors
� Pass a Color to Graphics object's setColor method

� Subsequent shapes will be drawn in the new color.

g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);
g.drawLine(20, 0, 10, 30);
g.setColor(Color.RED);
g.fillOval(60, 40, 40, 70);

� Pass a color to DrawingPanel's setBackground method

� The overall window background color will change.

Color brown = new Color(192, 128, 64);

panel.setBackground(brown);

Copyright 2008 by Pearson Education
11

Outlined shapes

� To draw a colored shape with an outline, first fill it,

then draw the same shape in the outline color.

import java.awt.*; // so I can use Graphics

public class OutlineExample {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(150, 70);
Graphics g = panel.getGraphics();

// inner red fill
g.setColor(Color.RED);
g.fillRect(20, 10, 100, 50);

// black outline
g.setColor(Color.BLACK);
g.drawRect(20, 10, 100, 50);

}
}

Copyright 2008 by Pearson Education
12

Drawing with loops
� The x,y, w,h expression can use the loop counter variable:

DrawingPanel panel = new DrawingPanel(400, 300);
panel.setBackground(Color.YELLOW);
Graphics g = panel.getGraphics();

g.setColor(Color.RED);
for (int i = 1; i <= 10; i++) {

g.fillOval(100 + 20 * i, 5 + 20 * i, 50, 50);
}

� Nested loops are okay as well:

DrawingPanel panel = new DrawingPanel(250, 250);
Graphics g = panel.getGraphics();
g.setColor(Color.BLUE);

for (int x = 1; x <= 4; x++) {
for (int y = 1; y <= 9; y++) {

g.drawString("Java", x * 40, y * 25);
}

}

Copyright 2008 by Pearson Education
13

Loops that begin at 0
� Beginning at 0 and using < can make coordinates easier.

� Example:

� Draw ten stacked rectangles starting at (20, 20), height 10,
width starting at 100 and decreasing by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);

Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {

g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

Copyright 2008 by Pearson Education
14

Drawing w/ loops questions
� Code from previous slide:

DrawingPanel panel = new DrawingPanel(160, 160);
Graphics g = panel.getGraphics();

for (int i = 0; i < 10; i++) {
g.drawRect(20, 20 + 10 * i, 100 - 10 * i, 10);

}

� Write variations of the above
program that draw the figures
at right as output.

Copyright 2008 by Pearson Education
15

Drawing w/ loops answers
� Solution #1:

Graphics g = panel.getGraphics();
for (int i = 0; i < 10; i++) {

g.drawRect(20 + 10 * i, 20 + 10 * i,
100 - 10 * i, 10);

}

� Solution #2:
Graphics g = panel.getGraphics();
for (int i = 0; i < 10; i++) {

g.drawRect(110 - 10 * i, 20 + 10 * i,
10 + 10 * i, 10);

}

Copyright 2008 by Pearson Education
16

Superimposing shapes
� When ≥ 2 shapes occupy the same pixels, the last drawn "wins."

import java.awt.*;

public class Car {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();

g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

Copyright 2008 by Pearson Education
17

Drawing with methods
� To draw in multiple methods, you must pass Graphics g.
import java.awt.*;

public class Car2 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g);

}

public static void drawCar(Graphics g) {
g.setColor(Color.BLACK);
g.fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.fillOval(20, 70, 20, 20);
g.fillOval(80, 70, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(80, 40, 30, 20);

}
}

Copyright 2008 by Pearson Education
18

Parameterized figures
� Modify the car-drawing method so that it can draw cars at
different positions, as in the following image.

� Top-left corners: (10, 30), (150, 10)

Copyright 2008 by Pearson Education
19

Parameterized answer
import java.awt.*;

public class Car3 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(260, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g, 10, 30);
drawCar(g, 150, 10);

}

public static void drawCar(Graphics g, int x, int y) {
g.setColor(Color.BLACK);
g.fillRect(x, y, 100, 50);

g.setColor(Color.RED);
g.fillOval(x + 10, y + 40, 20, 20);
g.fillOval(x + 70, y + 40, 20, 20);

g.setColor(Color.CYAN);
g.fillRect(x + 70, y + 10, 30, 20);

}
}

Copyright 2008 by Pearson Education
20

� Modify drawCar to allow the car to be drawn at any size.

� Existing car: size 100

� Second car: size 50, top/left at (150, 10)

� Then use a for loop to draw a line of cars.

� Start at (10, 130), each car size 40, separated by 50px.

Drawing parameter question

Copyright 2008 by Pearson Education
21

Drawing parameter answer
import java.awt.*;

public class Car4 {
public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g = panel.getGraphics();
drawCar(g, 10, 30, 100);
drawCar(g, 150, 10, 50);

for (int i = 0; i < 5; i++) {
drawCar(g, 10 + i * 50, 130, 40);

}
}

public static void drawCar(Graphics g, int x, int y, int size) {
g.setColor(Color.BLACK);
g.fillRect(x, y, size, size / 2);

g.setColor(Color.RED);
g.fillOval(x + size / 10, y + 2 * size / 5,

size / 5, size / 5);
g.fillOval(x + 7 * size / 10, y + 2 * size / 5,

size / 5, size / 5);

g.setColor(Color.CYAN);
g.fillRect(x + 7 * size / 10, y + size / 10,

3 * size / 10, size / 5);
}

}

Copyright 2008 by Pearson Education
22

Polygon
Objects that represent arbitrary shapes

� Add points to a Polygon using its addPoint(x, y) method.

� Example:

DrawingPanel p = new DrawingPanel(100, 100);
Graphics g = p.getGraphics();
g.setColor(Color.GREEN);

Polygon poly = new Polygon();
poly.addPoint(10, 90);
poly.addPoint(50, 10);
poly.addPoint(90, 90);
g.fillPolygon(poly);

Copyright 2008 by Pearson Education
23

Animation with sleep
� DrawingPanel's sleep method pauses your program for a

given number of milliseconds.

� You can use sleep to create simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i = 1; i <= 10; i++) {

g.fillOval(15 * i, 15 * i, 30, 30);
panel.sleep(500);

}

� Try adding sleep commands to loops in past exercises in this

chapter and watch the panel draw itself piece by piece.

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 3
Lecture 3-2: Return; double; System.out.printf

reading: 3.2, 3.5, 4.4

videos: Ch. 3 #2, 4

Copyright 2008 by Pearson Education
2

Projectile problem
 Write a program that displays (as text and graphics) the

paths of projectiles thrown at various velocities and angles.

 Projectile #1: velocity = 60, angle = 50°, steps = 10

 Projectile #2: velocity = 50, angle = 80°, steps = 50

step x y time
0 0.00 0.00 0.00
1 36.14 38.76 0.94
2 72.28 68.91 1.87
3 108.42 90.45 2.81
4 144.56 103.37 3.75
5 180.70 107.67 4.69
6 216.84 103.37 5.62
7 252.98 90.45 6.56
8 289.12 68.91 7.50
9 325.26 38.76 8.43
10 361.40 0.00 9.37

step x y time
0 0.00 0.00 0.00
1 1.74 9.69 0.20
2 3.49 18.98 0.40

...

Copyright 2008 by Pearson Education
3

Time observations
 We are given the number of "steps" of time to display.

 We must figure out how long it takes the projectile to hit the
ground, then divide this time into the # of steps requested.

step x y time
0 0.00 0.00 0.00
1 36.14 38.76 0.94
2 72.28 68.91 1.87

...
10 361.40 0.00 9.37

 Total time is based on the force of gravity on the projectile.
 Force of gravity (g) ≅ 9.81 m/s2, downward

 The projectile has an initial upward velocity, which is fought by
gravity until the projectile reaches its peak, then it falls.

Copyright 2008 by Pearson Education
4

Velocity and acceleration
 The projectile has a given initial velocity v0, which

can be divided into x and y components.

 v0x = v0 cos Θ

 v0y = v0 sin Θ

 Example: If v0=13 and Θ=60°, v0x=12 and v0y=5.

 The velocity vt of a moving body at time t, given initial
velocity v0 and acceleration a, can be expressed as:

 vt = v0 + a t

 In our case, because of symmetry, at the end time t the
projectile is falling exactly as fast as it was first going up.

 vt = -v0

-v0 = v0 + a t
t = -2 v0 / a

v0

v0x

v0y

Θ

Copyright 2008 by Pearson Education

Return Values

reading: 3.2

self-check: #7-11

exercises: #4-6

videos: Ch. 3 #2

Copyright 2008 by Pearson Education
6

Java's Math class
Method name Description

Math.abs(value) absolute value

Math.round(value) nearest whole number

Math.ceil(value) rounds up

Math.floor(value) rounds down

Math.log10(value) logarithm, base 10

Math.max(value1, value2) larger of two values

Math.min(value1, value2) smaller of two values

Math.pow(base, exp) base to the exp power

Math.sqrt(value) square root

Math.sin(value)

Math.cos(value)

Math.tan(value)

sine/cosine/tangent of
an angle in radians

Math.toDegrees(value)

Math.toRadians(value)

convert degrees to
radians and back

Math.random() random double between 0 and 1

Constant Description

E 2.7182818...

PI 3.1415926...

Copyright 2008 by Pearson Education
7

Calling Math methods
Math.methodName(parameters)

 Examples:

double squareRoot = Math.sqrt(121.0);

System.out.println(squareRoot); // 11.0

int absoluteValue = Math.abs(-50);

System.out.println(absoluteValue); // 50

System.out.println(Math.min(3, 7) + 2); // 5

 The Math methods do not print to the console.

 Each method produces ("returns") a numeric result.

 The results are used as expressions (printed, stored, etc.).

Copyright 2008 by Pearson Education
8

Return
 return: To send out a value as the result of a method.

 The opposite of a parameter:

 Parameters send information in from the caller to the method.

 Return values send information out from a method to its caller.

main

Math.abs(-42)-42

Math.round(2.71)

2.71

42

3

Copyright 2008 by Pearson Education
9

Math questions

 Evaluate the following expressions:

 Math.abs(-1.23)

 Math.pow(3, 2)

 Math.pow(10, -2)

 Math.sqrt(121.0) - Math.sqrt(256.0)

 Math.round(Math.PI) + Math.round(Math.E)

 Math.ceil(6.022) + Math.floor(15.9994)

 Math.abs(Math.min(-3, -5))

 Math.max and Math.min can be used to bound numbers.

Consider an int variable named age.

 What statement would replace negative ages with 0?

 What statement would cap the maximum age to 40?

Copyright 2008 by Pearson Education
10

Returning a value
public static type name(parameters) {

statements;

...

return expression;

}

 Example:

// Returns the slope of the line between the given points.

public static double slope(int x1, int y1, int x2, int y2) {

double dy = y2 - y1;

double dx = x2 - x1;

return dy / dx;

}

Copyright 2008 by Pearson Education
11

Return examples
// Converts Fahrenheit to Celsius.

public static double fToC(double degreesF) {

double degreesC = 5.0 / 9.0 * (degreesF - 32);

return degreesC;

}

// Computes triangle hypotenuse length given its side lengths.

public static double hypotenuse(int a, int b) {

double c = Math.sqrt(a * a + b * b);

return c;

}

 You can shorten the examples by returning an expression:

public static double fToC(double degreesF) {

return 5.0 / 9.0 * (degreesF - 32);

}

Copyright 2008 by Pearson Education
12

Common error: Not storing
 Many students incorrectly think that a return statement

sends a variable's name back to the calling method.

public static void main(String[] args) {

slope(0, 0, 6, 3);

System.out.println("The slope is " + result); // ERROR:

} // result not defined

public static double slope(int x1, int x2, int y1, int y2) {

double dy = y2 - y1;

double dx = x2 - x1;

double result = dy / dx;

return result;

}

Copyright 2008 by Pearson Education
13

Fixing the common error
 Instead, returning sends the variable's value back.

 The returned value must be stored into a variable or used in
an expression to be useful to the caller.

public static void main(String[] args) {

double s = slope(0, 0, 6, 3);

System.out.println("The slope is " + s);

}

public static double slope(int x1, int x2, int y1, int y2) {

double dy = y2 - y1;

double dx = x2 - x1;

double result = dy / dx;

return result;

}

Copyright 2008 by Pearson Education
14

Quirks of real numbers
 Some Math methods return double or other non-int types.

int x = Math.pow(10, 3); // ERROR: incompat. types

 Some double values print poorly (too many digits).

double result = 1.0 / 3.0;

System.out.println(result); // 0.3333333333333

 The computer represents doubles in an imprecise way.

System.out.println(0.1 + 0.2);

 Instead of 0.3, the output is 0.30000000000000004

Copyright 2008 by Pearson Education
15

Type casting
 type cast: A conversion from one type to another.

 To promote an int into a double to get exact division from /

 To truncate a double from a real number to an integer

 Syntax:

(type) expression

Examples:
double result = (double) 19 / 5; // 3.8

int result2 = (int) result; // 3

int x = (int) Math.pow(10, 3); // 1000

Copyright 2008 by Pearson Education
16

More about type casting
 Type casting has high precedence and only casts the item

immediately next to it.

 double x = (double) 1 + 1 / 2; // 1

 double y = 1 + (double) 1 / 2; // 1.5

 You can use parentheses to force evaluation order.

 double average = (double) (a + b + c) / 3;

 A conversion to double can be achieved in other ways.

 double average = 1.0 * (a + b + c) / 3;

Copyright 2008 by Pearson Education
17

System.out.printf

an advanced command for printing formatted text

System.out.printf("format string", parameters);

 A format string contains placeholders to insert parameters into it:

 %d an integer

 %f a real number

 %s a string

 Example:

int x = 3;

int y = 2;

System.out.printf("(%d, %d)\n", x, y); // (3, 2)

Copyright 2008 by Pearson Education
18

System.out.printf cont'd

 A placeholder can specify the parameter's width or precision:

 %8d an integer, 8 characters wide, right-aligned

 %-8d an integer, 8 characters wide, left-aligned

 %.4f a real number, 4 characters after decimal

 %6.2f a real number, 6 characters wide, 2 after decimal

 Examples:
int age = 45;

double gpa = 1.2345678;

System.out.printf("%-8d %4f\n", age, gpa);

System.out.printf("%8.3f %.1f %.5f", gpa, gpa, gpa);

 Output:
45 1.23

1.234 1.2 1.23457

Copyright 2008 by Pearson Education
19

Projectile problem revisited
 Recall: Display (as text and graphics) the paths of

projectiles thrown at various velocities and angles.

 Projectile #1: velocity = 60, angle = 50°, steps = 10

 Projectile #2: velocity = 50, angle = 80°, steps = 50

step x y time
0 0.00 0.00 0.00
1 36.14 38.76 0.94
2 72.28 68.91 1.87
3 108.42 90.45 2.81
4 144.56 103.37 3.75
5 180.70 107.67 4.69
6 216.84 103.37 5.62
7 252.98 90.45 6.56
8 289.12 68.91 7.50
9 325.26 38.76 8.43
10 361.40 0.00 9.37

step x y time
0 0.00 0.00 0.00
1 1.74 9.69 0.20
2 3.49 18.98 0.40

...

Copyright 2008 by Pearson Education
20

X/Y position, displacement
 Based on the previous, we can now display x and time.

 xt = vx t since there is no force in the x direction.

step x y time
0 0.00 ???? 0.00
1 36.14 ???? 0.94
2 72.28 ???? 1.87

...
10 361.40 ???? 9.37

 To display the y, we need to compute the projectile's
displacement in y direction at each time increment.

 yt = v0y t + ½ a t2

 Since this formula is complicated, let's make it into a method.

Copyright 2008 by Pearson Education
21

Projectile solution
// This program computes and draws the trajectory of a projectile.

import java.awt.*;

public class Projectile {

// constant for Earth's gravity acceleration in meters/second^2
public static final double ACCELERATION = -9.81;

public static void main(String[] args) {

DrawingPanel panel = new DrawingPanel(420, 250);

Graphics g = panel.getGraphics();

// v0 angle steps
table(g, 60, 50, 10);

g.setColor(Color.RED);

table(g, 50, 80, 50);
}

// returns the displacement for a body under acceleration
public static double displacement(double v0, double t, double a) {

return v0 * t + 0.5 * a * t * t;

}

...

Copyright 2008 by Pearson Education
22

Projectile solution
...

// prints a table showing the trajectory of an object given
// its initial velocity v and angle and number of steps
public static void table(Graphics g, double v0,

double angle, int steps) {

double v0x = v0 * Math.cos(Math.toRadians(angle));

double v0y = v0 * Math.sin(Math.toRadians(angle));

double totalTime = -2.0 * v0y / ACCELERATION;

double dt = totalTime / steps;

System.out.println(" step x y time");

for (int i = 0; i <= steps; i++) {

double time = i * dt;

double x = i * v0x * dt;

double y = displacement(v0y, time, ACCELERATION);
System.out.printf("%8d%8.2f%8.2f%8.2f\n", i, x, y, time);

g.fillOval((int) x, (int) (250 - y), 5, 5);

}

}

}

Copyright 2008 by Pearson Education

Building Java Programs

Chapter 3
Lecture 3-3: Interactive Programs w/ Scanner

reading: 3.3 - 3.4

self-check: #16-19

exercises: #11

videos: Ch. 3 #4

Copyright 2008 by Pearson Education
2

Interactive programs
 We have written programs that print console output, but it

is also possible to read input from the console.

 The user types input into the console. We capture the input
and use it in our program.

 Such a program is called an interactive program.

 Interactive programs can be challenging.

 Computers and users think in very different ways.

 Users misbehave.

Copyright 2008 by Pearson Education
3

Input and System.in

 System.out

 An object with methods named println and print

 System.in

 not intended to be used directly

 We use a second object, from a class Scanner, to help us.

 Constructing a Scanner object to read console input:

Scanner name = new Scanner(System.in);

 Example:

Scanner console = new Scanner(System.in);

Copyright 2008 by Pearson Education
4

Java class libraries, import
 Java class libraries: Classes included with Java's JDK.

 organized into groups named packages

 To use a package, put an import declaration in your program.

 Syntax:

// put this at the very top of your program

import packageName.*;

 Scanner is in a package named java.util

import java.util.*;

 To use Scanner, you must place the above line at the top of
your program (before the public class header).

Copyright 2008 by Pearson Education
5

Scanner methods

 Each method waits until the user presses Enter.

 The value typed is returned.

System.out.print("How old are you? "); // prompt

int age = console.nextInt();

System.out.println("You'll be 40 in " +

(40 - age) + " years.");

 prompt: A message telling the user what input to type.

Method Description

nextInt() reads a token of user input as an int

nextDouble() reads a token of user input as a double

next() reads a token of user input as a String

nextLine() reads a line of user input as a String

Copyright 2008 by Pearson Education
6

Example Scanner usage
import java.util.*; // so that I can use Scanner

public class ReadSomeInput {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How old are you? ");

int age = console.nextInt();

System.out.println(age + "... That's quite old!");

}

}

 Output (user input underlined):

How old are you? 14

14... That's quite old!

Copyright 2008 by Pearson Education
7

Another Scanner example
import java.util.*; // so that I can use Scanner

public class ScannerSum {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");

int num1 = console.nextInt();

int num2 = console.nextInt();

int num3 = console.nextInt();

int sum = num1 + num2 + num3;

System.out.println("The sum is " + sum);

}

}

 Output (user input underlined):
Please type three numbers: 8 6 13

The sum is 27

 The Scanner can read multiple values from one line.

Copyright 2008 by Pearson Education
8

Input tokens
 token: A unit of user input, as read by the Scanner.

 Tokens are separated by whitespace (spaces, tabs, newlines).

 How many tokens appear on the following line of input?
23 John Smith 42.0 "Hello world" $2.50 " 19"

 When a token is not the type you ask for, it crashes.

System.out.print("What is your age? ");

int age = console.nextInt();

Output:

What is your age? Timmy

java.util.InputMismatchException

at java.util.Scanner.next(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

...

Copyright 2008 by Pearson Education
9

Scanners as parameters
 If many methods read input, declare a Scanner in main and

pass it to the others as a parameter.

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

int sum = readSum3(console);

System.out.println("The sum is " + sum);

}

// Prompts for 3 numbers and returns their sum.

public static int readSum3(Scanner console) {

System.out.print("Type 3 numbers: ");

int num1 = console.nextInt();

int num2 = console.nextInt();

int num3 = console.nextInt();

return num1 + num2 + num3;

}

Copyright 2008 by Pearson Education

Cumulative sum

reading: 4.1

self-check: Ch. 4 #1-3

exercises: Ch. 4 #1-6

Copyright 2008 by Pearson Education
11

Adding many numbers
 How would you find the sum of all integers from 1-1000?

int sum = 1 + 2 + 3 + 4 + ... ;

System.out.println("The sum is " + sum);

 What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?

 We could write a method that accepts the max value as a
parameter and prints the sum.

 How can we generalize code like the above?

Copyright 2008 by Pearson Education
12

A failed attempt
 An incorrect solution for summing 1-1000:

for (int i = 1; i <= 1000; i++) {

int sum = 0;

sum = sum + i;

}

// sum is undefined here

System.out.println("The sum is " + sum);

 sum's scope is in the for loop, so the code does not compile.

 cumulative sum: A variable that keeps a sum in progress

and is updated repeatedly until summing is finished.

 The sum in the above code is an attempt at a cumulative sum.

Copyright 2008 by Pearson Education
13

Fixed cumulative sum loop
 A corrected version of the sum loop code:

int sum = 0;

for (int i = 1; i <= 1000; i++) {

sum = sum + i;

}

System.out.println("The sum is " + sum);

Key idea:

 Cumulative sum variables must be declared outside the loops

that update them, so that they will exist after the loop.

Copyright 2008 by Pearson Education
14

Cumulative product
 This cumulative idea can be used with other operators:

int product = 1;

for (int i = 1; i <= 20; i++) {

product = product * 2;

}

System.out.println("2 ^ 20 = " + product);

 How would we make the base and exponent adjustable?

Copyright 2008 by Pearson Education
15

Scanner and cumulative sum

 We can do a cumulative sum of user input:

Scanner console = new Scanner(System.in);

int sum = 0;

for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");

sum = sum + console.nextInt();

}

System.out.println("The sum is " + sum);

Copyright 2008 by Pearson Education
16

User-guided cumulative sum
Scanner console = new Scanner(System.in);

System.out.print("How many numbers to add? ");

int count = console.nextInt();

int sum = 0;

for (int i = 1; i <= count; i++) {

System.out.print("Type a number: ");

sum = sum + console.nextInt();

}

System.out.println("The sum is " + sum);

 Output:

How many numbers to add? 3

Type a number: 2

Type a number: 6

Type a number: 3

The sum is 11

Copyright 2008 by Pearson Education
17

Cumulative sum question
 Write a program that reads two employees' hours and

displays each employee's total and the overall total hours.

 The company doesn't pay overtime; cap each day at 8 hours.

 Example log of execution:

Employee 1: How many days? 3

Hours? 6

Hours? 12

Hours? 5

Employee 1's total hours = 19 (6.3 / day)

Employee 2: How many days? 2

Hours? 11

Hours? 6

Employee 2's total hours = 14 (7.0 / day)

Total hours for both = 33

Copyright 2008 by Pearson Education
18

Cumulative sum answer

// Computes the total paid hours worked by two employees.

// The company does not pay for more than 8 hours per day.

// Uses a "cumulative sum" loop to compute the total hours.

import java.util.*;

public class Hours {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

int hours1 = processEmployee(console, 1);

int hours2 = processEmployee(console, 2);

int total = hours1 + hours2;

System.out.println("Total hours for both = " + total);

}

...

Copyright 2008 by Pearson Education
19

Cumulative sum answer 2
...

// Reads hours information about an employee with the given number.

// Returns total hours worked by the employee.

public static int processEmployee(Scanner console, int number) {

System.out.print("Employee " + number + ": How many days? ");

int days = console.nextInt();

// totalHours is a cumulative sum of all days' hours worked.

int totalHours = 0;

for (int i = 1; i <= days; i++) {

System.out.print("Hours? ");

int hours = console.nextInt();

totalHours = totalHours + Math.min(hours, 8);

}

double hoursPerDay = (double) totalHours / days;

System.out.printf("Employee %d's total hours = %d (%.1f / day)\n",

number, totalHours, hoursPerDay);

System.out.println();

return totalHours;

}

}

Copyright 2008 by Pearson Education
20

Cumulative sum question
 Write a modified version of the Receipt program from Ch.2

that prompts the user for how many people ate and how
much each person's dinner cost.

 Display results in format below, with $ and 2 digits after the .

 Example log of execution:

How many people ate? 4

Person #1: How much did your dinner cost? 20.00

Person #2: How much did your dinner cost? 15

Person #3: How much did your dinner cost? 25.0

Person #4: How much did your dinner cost? 10.00

Subtotal: $70.00

Tax: $5.60

Tip: $10.50

Total: $86.10

Copyright 2008 by Pearson Education
21

Cumulative sum answer
// This program enhances our Receipt program using a cumulative sum.
import java.util.*;

public class Receipt2 {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
System.out.print("How many people ate? ");
int people = console.nextInt();
double subtotal = 0.0; // cumulative sum

for (int i = 1; i <= people; i++) {
System.out.print("Person #" + i +

": How much did your dinner cost? ");
double personCost = console.nextDouble();
subtotal = subtotal + personCost; // add to sum

}
results(subtotal);

}

// Calculates total owed, assuming 8% tax and 15% tip
public static void results(double subtotal) {

double tax = subtotal * .08;
double tip = subtotal * .15;
double total = subtotal + tax + tip;

System.out.printf("Subtotal: $%.2f\n", subtotal);
System.out.printf("Tax: $%.2f\n", tax);
System.out.printf("Tip: $%.2f\n", tip);
System.out.printf("Total: $%.2f\n", total);

}
}

Copyright 2008 by Pearson Education
22

The if statement

Executes a block of statements only if a test is true

if (test) {
statement;
...
statement;

}

 Example:
double gpa = console.nextDouble();

if (gpa >= 2.0) {

System.out.println("Application accepted.");

}

Copyright 2008 by Pearson Education
23

The if/else statement

Executes one block if a test is true, another if false

if (test) {
statement(s);

} else {

statement(s);
}

 Example:
double gpa = console.nextDouble();

if (gpa >= 2.0) {

System.out.println("Welcome to Mars University!");

} else {

System.out.println("Application denied.");

}

Copyright 2008 by Pearson Education
24

Relational expressions
 A test in an if is the same as in a for loop.

for (int i = 1; i <= 10; i++) { ...

if (i <= 10) { ...

 These are boolean expressions, seen in Ch. 5.

 Tests use relational operators:

Operator Meaning Example Value

== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

Copyright 2008 by Pearson Education
25

Logical operators: &&, ||, !

 Conditions can be combined using logical operators:

 "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

p q p && q p || q

true true true true

true false false true

false true false true

false false false false

p !p

true false

false true

Copyright 2008 by Pearson Education
26

Evaluating logic expressions
 Relational operators have lower precedence than math.

5 * 7 >= 3 + 5 * (7 - 1)

5 * 7 >= 3 + 5 * 6

35 >= 3 + 30

35 >= 33

true

 Relational operators cannot be "chained" as in algebra.

2 <= x <= 10 (assume that x is 15)

true <= 10

error!

 Instead, combine multiple tests with && or ||

2 <= x && x <= 10 (assume that x is 15)

true && false

false

Copyright 2008 by Pearson Education
27

Logical questions
 What is the result of each of the following expressions?

int x = 42;

int y = 17;

int z = 25;

 y < x && y <= z

 x % 2 == y % 2 || x % 2 == z % 2

 x <= y + z && x >= y + z

 !(x < y && x < z)

 (x + y) % 2 == 0 || !((z - y) % 2 == 0)

 Answers: true, false, true, true, false

