

Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 2

Lecture 2-1: Expressions and Variables

reading: 2.1 - 2.2

Copyright 2008 by Pearson Education
2

Data and expressions

reading: 2.1

self-check: 1-4

videos: Ch. 2 #1

Copyright 2008 by Pearson Education
3

Data types
 type: A category or set of data values.

 Constrains the operations that can be performed on data

 Many languages ask the programmer to specify types

 Examples: integer, real number, string

 Internally, computers store everything as 1s and 0s

 104 01101000

 "hi" 01101000110101

Copyright 2008 by Pearson Education
4

Java's primitive types

 primitive types: 8 simple types for numbers, text, etc.

 Java also has object types, which we'll talk about later

 Name Description Examples

 int integers 42, -3, 0, 926394

 double real numbers 3.1, -0.25, 9.4e3

 char single text characters 'a', 'X', '?', '\n'

 boolean logical values true, false

• Why does Java distinguish integers vs. real numbers?

Copyright 2008 by Pearson Education
5

Expressions
 expression: A value or operation that computes a value.

• Examples: 1 + 4 * 5

 (7 + 2) * 6 / 3

 42

 The simplest expression is a literal value.

 A complex expression can use operators and parentheses.

Copyright 2008 by Pearson Education
6

Arithmetic operators
 operator: Combines multiple values or expressions.

 + addition

 - subtraction (or negation)

 * multiplication

 / division

 % modulus (a.k.a. remainder)

 As a program runs, its expressions are evaluated.

 1 + 1 evaluates to 2

 System.out.println(3 * 4); prints 12

 How would we print the text 3 * 4 ?

Copyright 2008 by Pearson Education
7

Integer division with /

 When we divide integers, the quotient is also an integer.

 14 / 4 is 3, not 3.5

 3 4 52

 4) 14 10) 45 27) 1425

 12 40 135

 2 5 75

 54

 21

 More examples:

 32 / 5 is 6

 84 / 10 is 8

 156 / 100 is 1

 Dividing by 0 causes an error when your program runs.

Copyright 2008 by Pearson Education
8

Integer remainder with %
 The % operator computes the remainder from integer division.

 14 % 4 is 2

 218 % 5 is 3

 3 43

 4) 14 5) 218

 12 20

 2 18

 15

 3

 Applications of % operator:

 Obtain last digit of a number: 230857 % 10 is 7

 Obtain last 4 digits: 658236489 % 10000 is 6489

 See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?

45 % 6

2 % 2

8 % 20

11 % 0

Copyright 2008 by Pearson Education
9

Precedence
 precedence: Order in which operators are evaluated.

 Generally operators evaluate left-to-right.

1 - 2 - 3 is (1 - 2) - 3 which is -4

 But */% have a higher level of precedence than +-

1 + 3 * 4 is 13

 6 + 8 / 2 * 3

 6 + 4 * 3

 6 + 12 is 18

 Parentheses can force a certain order of evaluation:

(1 + 3) * 4 is 16

 Spacing does not affect order of evaluation

1+3 * 4-2 is 11

Copyright 2008 by Pearson Education
10

Precedence examples

 1 * 2 + 3 * 5 % 4

 _/
 |
 2 + 3 * 5 % 4

 _/
 |
 2 + 15 % 4

 ___/
 |
 2 + 3

 ________/
 |
 5

 1 + 8 % 3 * 2 - 9

 _/
 |
1 + 2 * 2 - 9

 ___/
 |
1 + 4 - 9

 ______/
 |
 5 - 9

 _________/
 |
 -4

Copyright 2008 by Pearson Education
11

Precedence questions
 What values result from the following expressions?

 9 / 5

 695 % 20

 7 + 6 * 5

 7 * 6 + 5

 248 % 100 / 5

 6 * 3 - 9 / 4

 (5 - 7) * 4

 6 + (18 % (17 - 12))

Copyright 2008 by Pearson Education
12

Real numbers (type double)

 Examples: 6.022 , -42.0 , 2.143e17

 Placing .0 or . after an integer makes it a double.

 The operators +-*/%() all still work with double.

 / produces an exact answer: 15.0 / 2.0 is 7.5

 Precedence is the same: () before */% before +-

Copyright 2008 by Pearson Education
13

Real number example
 2.0 * 2.4 + 2.25 * 4.0 / 2.0

 ___/

 |

 4.8 + 2.25 * 4.0 / 2.0

 ___/

 |

 4.8 + 9.0 / 2.0

 _____/

 |

 4.8 + 4.5

 ____________/

 |

 9.3

Copyright 2008 by Pearson Education
14

Mixing types
 When int and double are mixed, the result is a double.

 4.2 * 3 is 12.6

 The conversion is per-operator, affecting only its operands.
 7 / 3 * 1.2 + 3 / 2

 _/
 |
 2 * 1.2 + 3 / 2

 ___/
 |
 2.4 + 3 / 2

 _/
 |
 2.4 + 1

 ________/
 |
 3.4

 3 / 2 is 1 above, not 1.5.

 2.0 + 10 / 3 * 2.5 - 6 / 4

 ___/
 |
2.0 + 3 * 2.5 - 6 / 4

 _____/
 |
2.0 + 7.5 - 6 / 4

 _/
 |
2.0 + 7.5 - 1

 _________/
 |
 9.5 - 1

 ______________/
 |
 8.5

Copyright 2008 by Pearson Education
15

String concatenation
 string concatenation: Using + between a string and

another value to make a longer string.

 "hello" + 42 is "hello42"
 1 + "abc" + 2 is "1abc2"
 "abc" + 1 + 2 is "abc12"
 1 + 2 + "abc" is "3abc"
 "abc" + 9 * 3 is "abc27"
 "1" + 1 is "11"
 4 - 1 + "abc" is "3abc"

 Use + to print a string and an expression's value together.

 System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

Copyright 2008 by Pearson Education
16

Variables

reading: 2.2

self-check: 1-15

exercises: 1-4

videos: Ch. 2 #2

Copyright 2008 by Pearson Education
17

Receipt example
What's bad about the following code?

public class Receipt {

 public static void main(String[] args) {

 // Calculate total owed, assuming 8% tax / 15% tip
 System.out.println("Subtotal:");
 System.out.println(38 + 40 + 30);

 System.out.println("Tax:");

 System.out.println((38 + 40 + 30) * .08);

 System.out.println("Tip:");

 System.out.println((38 + 40 + 30) * .15);

 System.out.println("Total:");

 System.out.println(38 + 40 + 30 +

 (38 + 40 + 30) * .08 +

 (38 + 40 + 30) * .15);

 }

}

 The subtotal expression (38 + 40 + 30) is repeated

 So many println statements

Copyright 2008 by Pearson Education
18

Variables
 variable: A piece of the computer's memory that is given a

name and type, and can store a value.

 Like preset stations on a car stereo, or cell phone speed dial:

 Steps for using a variable:

 Declare it - state its name and type

 Initialize it - store a value into it

 Use it - print it or use it as part of an expression

Copyright 2008 by Pearson Education
19

Declaration
 variable declaration: Sets aside memory for storing a value.

 Variables must be declared before they can be used.

 Syntax:

 type name;

 The name is an identifier.

 int x;

 double myGPA;

x

myGPA

Copyright 2008 by Pearson Education
20

Assignment
 assignment: Stores a value into a variable.

 The value can be an expression; the variable stores its result.

 Syntax:

 name = expression;

 int x;

x = 3;

 double myGPA;

myGPA = 1.0 + 2.25;

x 3

myGPA 3.25

Copyright 2008 by Pearson Education
21

Using variables
 Once given a value, a variable can be used in expressions:

 int x;

 x = 3;

 System.out.println("x is " + x); // x is 3

 System.out.println(5 * x - 1); // 5 * 3 - 1

 You can assign a value more than once:

int x;

x = 3;

System.out.println(x + " here"); // 3 here

x = 4 + 7;

System.out.println("now x is " + x); // now x is 11

x 3 x 11

Copyright 2008 by Pearson Education
22

Declaration/initialization
 A variable can be declared/initialized in one statement.

 Syntax:

 type name = value;

 double myGPA = 3.95;

 int x = (11 % 3) + 12;

x 14

myGPA 3.95

Copyright 2008 by Pearson Education
23

Assignment and algebra
 Assignment uses = , but it is not an algebraic equation.

 = means, "store the value at right in variable at left"

 x = 3; means "x becomes 3" or "x should now store 3"

 What happens here?

int x = 3;

x = x + 2; // ??? x 3 x 5

Copyright 2008 by Pearson Education
24

Assignment and types
 A variable can only store a value of its own type.

 int x = 2.5; // ERROR: incompatible types

 An int value can be stored in a double variable.

 The value is converted into the equivalent real number.

 double myGPA = 4;

 double avg = 11 / 2;

 Why does avg store 5.0
and not 5.5 ?

myGPA 4.0

avg 5.0

Copyright 2008 by Pearson Education
25

Compiler errors
 A variable can't be used until it is assigned a value.

 int x;

 System.out.println(x); // ERROR: x has no value

 You may not declare the same variable twice.

 int x;

int x; // ERROR: x already exists

 int x = 3;

int x = 5; // ERROR: x already exists

 How can this code be fixed?

Copyright 2008 by Pearson Education
26

Printing a variable's value
 Use + to print a string and a variable's value on one line.

 double grade = (95.1 + 71.9 + 82.6) / 3.0;

 System.out.println("Your grade was " + grade);

 int students = 11 + 17 + 4 + 19 + 14;

 System.out.println("There are " + students +

 " students in the course.");

• Output:

 Your grade was 83.2

 There are 65 students in the course.

Copyright 2008 by Pearson Education
27

Receipt question
Improve the receipt program using variables.

public class Receipt {

 public static void main(String[] args) {

 // Calculate total owed, assuming 8% tax / 15% tip

 System.out.println("Subtotal:");

 System.out.println(38 + 40 + 30);

 System.out.println("Tax:");

 System.out.println((38 + 40 + 30) * .08);

 System.out.println("Tip:");

 System.out.println((38 + 40 + 30) * .15);

 System.out.println("Total:");

 System.out.println(38 + 40 + 30 +

 (38 + 40 + 30) * .15 +

 (38 + 40 + 30) * .08);

 }

}

Copyright 2008 by Pearson Education
28

Receipt answer
public class Receipt {

 public static void main(String[] args) {

 // Calculate total owed, assuming 8% tax / 15% tip

 int subtotal = 38 + 40 + 30;

 double tax = subtotal * .08;

 double tip = subtotal * .15;

 double total = subtotal + tax + tip;

 System.out.println("Subtotal: " + subtotal);

 System.out.println("Tax: " + tax);

 System.out.println("Tip: " + tip);

 System.out.println("Total: " + total);

 }

}

Copyright 2008 by Pearson Education
29

Building Java Programs

Chapter 2

Lecture 2-2: The for Loop

reading: 2.3

self-check: 12-26
exercises: 2-14

videos: Ch. 2 #3

Copyright 2008 by Pearson Education
30

Increment and decrement
shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version

variable++; variable = variable + 1;

variable--; variable = variable - 1;

int x = 2;

x++; // x = x + 1;

 // x now stores 3

double gpa = 2.5;

gpa--; // gpa = gpa - 1;

 // gpa now stores 1.5

Copyright 2008 by Pearson Education
31

Modify-and-assign operators

shortcuts to modify a variable's value

Shorthand Equivalent longer version

variable += value; variable = variable + value;

variable -= value; variable = variable - value;

variable *= value; variable = variable * value;

variable /= value; variable = variable / value;

variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

Copyright 2008 by Pearson Education
32

Repetition over a range
 System.out.println("1 squared = " + 1 * 1);

 System.out.println("2 squared = " + 2 * 2);

 System.out.println("3 squared = " + 3 * 3);

 System.out.println("4 squared = " + 4 * 4);

 System.out.println("5 squared = " + 5 * 5);

 System.out.println("6 squared = " + 6 * 6);

 Intuition: "I want to print a line for each number from 1 to 6"

 There's a statement, the for loop, that does just that!

 for (int i = 1; i <= 6; i++) {

 System.out.println(i + " squared = " + (i * i));

 }

 "For each integer i from 1 through 6, print ..."

Copyright 2008 by Pearson Education
33

for loop syntax
 for (initialization; test; update) {

 statement;

 statement;

 ...

 statement;

 }

 Perform initialization once.

 Repeat the following:

 Check if the test is true. If not, stop.

 Execute the statements.

 Perform the update.

 body

 header

Copyright 2008 by Pearson Education
34

Initialization
 for (int i = 1; i <= 6; i++) {

 System.out.println(i + " squared = " + (i * i));

 }

 Tells Java what variable to use in the loop

 Called a loop counter

 Can use any variable name, not just i

 Can start at any value, not just 1

Copyright 2008 by Pearson Education
35

Test
 for (int i = 1; i <= 6; i++) {

 System.out.println(i + " squared = " + (i * i));

 }

 Tests the loop counter variable against a bound

 Uses comparison operators:

 < less than

 <= less than or equal to

 > greater than

 >= greater than or equal to

Copyright 2008 by Pearson Education
36

Update
 for (int i = 1; i <= 6; i++) {

 System.out.println(i + " squared = " + (i * i));

 }

 Changes loop counter's value after each repetition

 Without an update, you would have an infinite loop

 Can be any expression:

 for (int i = 1; i <= 9; i += 2) {

 System.out.println(i);

 }

Copyright 2008 by Pearson Education
37

Loop walkthrough
for (int i = 1; i <= 4; i++) {

 System.out.println(i + " squared = " + (i * i));

}

System.out.println("Whoo!");

 Output:

 1 squared = 1

 2 squared = 4

 3 squared = 9

 4 squared = 16

 Whoo!

1

1

2

2

3

3

4

4

5

5

Copyright 2008 by Pearson Education
38

General repetition
 System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("S-M-R-T");
System.out.println("I mean S-M-A-R-T");

 The loop's body doesn't have to use the counter variable:

 for (int i = 1; i <= 5; i++) { // repeat 5 times

 System.out.println("I am so smart");

 }

 System.out.println("S-M-R-T");

 System.out.println("I mean S-M-A-R-T");

Copyright 2008 by Pearson Education
39

Multi-line loop body
 System.out.println("+----+");

 for (int i = 1; i <= 3; i++) {

 System.out.println("\\ /");

 System.out.println("/ \\");

 }

 System.out.println("+----+");

 Output:
 +----+

 \ /

 / \

 \ /

 / \

 \ /

 / \

 +----+

Copyright 2008 by Pearson Education
40

Expressions for counter
 int highTemp = 5;

 for (int i = -3; i <= highTemp / 2; i++) {

 System.out.println(i * 1.8 + 32);

 }

 Output:

 26.6

28.4

30.2

32.0

33.8

35.6

Copyright 2008 by Pearson Education
41

System.out.print

 Prints without moving to a new line

 allows you to print partial messages on the same line

 int highestTemp = 5;

 for (int i = -3; i <= highestTemp / 2; i++) {

 System.out.print((i * 1.8 + 32) + " ");

 }

• Output:
 26.6 28.4 30.2 32.0 33.8 35.6

Copyright 2008 by Pearson Education
42

Counting down
 The update can use -- to make the loop count down.

 The test must say > instead of <

 System.out.print("T-minus ");
 for (int i = 10; i >= 1; i--) {

 System.out.print(i + ", ");

 }

 System.out.println("blastoff!");

 Output:
 T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

Copyright 2008 by Pearson Education
43

Mapping loops to numbers
for (int count = 1; count <= 5; count++) {

 ...
}

 What statement in the body would cause the loop to print:

 4 7 10 13 16

for (int count = 1; count <= 5; count++) {

 System.out.print(3 * count + 1 + " ");

}

Copyright 2008 by Pearson Education
44

Slope-intercept
for (int count = 1; count <= 5; count++) {

 ...
}

 What statement in the body would cause the loop to print:

 2 7 12 17 22

• Much like a slope-intercept problem:

• count is x

• the printed number is y

• The line passes through points:

 (1, 2), (2, 7), (3, 12), (4, 17), (5, 22)

• What is the equation of the line?

Copyright 2008 by Pearson Education
45

Loop tables
 What statement in the body would cause the loop to print:

2 7 12 17 22

 To see patterns, make a table of count and the numbers.

 Each time count goes up by 1, the number should go up by 5.

 But count * 5 is too great by 3, so we subtract 3.

count number to print 5 * count

1 2 5

2 7 10

3 12 15

4 17 20

5 22 25

5 * count - 3

2

7

12

17

22

Copyright 2008 by Pearson Education
46

Loop tables question
 What statement in the body would cause the loop to print:

17 13 9 5 1

• Let's create the loop table together.

 Each time count goes up 1, the number printed should ...

 But this multiple is off by a margin of ...

count number to print

1 17

2 13

3 9

4 5

5 1

-4 * count -4 * count + 21

-4 17

-8 13

-12 9

-16 5

-20 1

-4 * count

-4

-8

-12

-16

-20

Copyright 2008 by Pearson Education
1

Building Java Programs

Chapter 2

Lecture 2-2: The for Loop

reading: 2.3

self-check: 12-26
exercises: 2-14

videos: Ch. 2 #3

Copyright 2008 by Pearson Education
2

Increment and decrement
shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version

variable++; variable = variable + 1;

variable--; variable = variable - 1;

int x = 2;
x++; // x = x + 1;

// x now stores 3

double gpa = 2.5;
gpa--; // gpa = gpa - 1;

// gpa now stores 1.5

Copyright 2008 by Pearson Education
3

Modify-and-assign operators

shortcuts to modify a variable's value

Shorthand Equivalent longer version

variable += value; variable = variable + value;

variable -= value; variable = variable - value;

variable *= value; variable = variable * value;

variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

Copyright 2008 by Pearson Education
4

Repetition over a range
System.out.println("1 squared = " + 1 * 1);
System.out.println("2 squared = " + 2 * 2);
System.out.println("3 squared = " + 3 * 3);
System.out.println("4 squared = " + 4 * 4);
System.out.println("5 squared = " + 5 * 5);
System.out.println("6 squared = " + 6 * 6);

� Intuition: "I want to print a line for each number from 1 to 6"

� There's a statement, the for loop, that does just that!

for (int i = 1; i <= 6; i++) {
System.out.println(i + " squared = " + (i * i));

}

� "For each integer i from 1 through 6, print ..."

Copyright 2008 by Pearson Education
5

for loop syntax
for (initialization; test; update) {

statement;

statement;

...

statement;
}

� Perform initialization once.

� Repeat the following:

� Check if the test is true. If not, stop.

� Execute the statements.

� Perform the update.

body

header

Copyright 2008 by Pearson Education
6

Initialization
for (int i = 1; i <= 6; i++) {

System.out.println(i + " squared = " + (i * i));
}

� Tells Java what variable to use in the loop

� Called a loop counter

� Can use any variable name, not just i

� Can start at any value, not just 1

Copyright 2008 by Pearson Education
7

Test
for (int i = 1; i <= 6; i++) {

System.out.println(i + " squared = " + (i * i));
}

� Tests the loop counter variable against a bound

� Uses comparison operators:

< less than

<= less than or equal to

> greater than

>= greater than or equal to

Copyright 2008 by Pearson Education
8

Update
for (int i = 1; i <= 6; i++) {

System.out.println(i + " squared = " + (i * i));
}

� Changes loop counter's value after each repetition

� Without an update, you would have an infinite loop

� Can be any expression:

for (int i = 1; i <= 9; i += 2) {
System.out.println(i);

}

Copyright 2008 by Pearson Education
9

Loop walkthrough
for (int i = 1; i <= 4; i++) {

System.out.println(i + " squared = " + (i * i));
}
System.out.println("Whoo!");

Output:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
Whoo!

1

1

2

2

3

3

4

4

5

5

Copyright 2008 by Pearson Education
10

General repetition
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("I am so smart");
System.out.println("S-M-R-T");
System.out.println("I mean S-M-A-R-T");

� The loop's body doesn't have to use the counter variable:

for (int i = 1; i <= 5; i++) { // repeat 5 times
System.out.println("I am so smart");

}
System.out.println("S-M-R-T");
System.out.println("I mean S-M-A-R-T");

Copyright 2008 by Pearson Education
11

Multi-line loop body
System.out.println("+----+");
for (int i = 1; i <= 3; i++) {

System.out.println("\\ /");
System.out.println("/ \\");

}
System.out.println("+----+");

� Output:
+----+
\ /
/ \
\ /
/ \
\ /
/ \
+----+

Copyright 2008 by Pearson Education
12

Expressions for counter
int highTemp = 5;

for (int i = -3; i <= highTemp / 2; i++) {

System.out.println(i * 1.8 + 32);

}

� Output:

26.6
28.4
30.2
32.0
33.8
35.6

Copyright 2008 by Pearson Education
13

System.out.print
� Prints without moving to a new line

� allows you to print partial messages on the same line

int highestTemp = 5;
for (int i = -3; i <= highestTemp / 2; i++) {

System.out.print((i * 1.8 + 32) + " ");
}

• Output:
26.6 28.4 30.2 32.0 33.8 35.6

Copyright 2008 by Pearson Education
14

Counting down
� The update can use -- to make the loop count down.

� The test must say > instead of <

System.out.print("T-minus ");
for (int i = 10; i >= 1; i --) {

System.out.print(i + ", ");
}
System.out.println("blastoff!");

� Output:
T-minus 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, blastoff!

Copyright 2008 by Pearson Education
15

Mapping loops to numbers
for (int count = 1; count <= 5; count++) {

...
}

� What statement in the body would cause the loop to print:

4 7 10 13 16

for (int count = 1; count <= 5; count++) {

System.out.print(3 * count + 1 + " ");

}

Copyright 2008 by Pearson Education
16

Slope-intercept
for (int count = 1; count <= 5; count++) {

...
}

� What statement in the body would cause the loop to print:

2 7 12 17 22

• Much like a slope-intercept problem:

• count is x

• the printed number is y

• The line passes through points:

(1, 2), (2, 7), (3, 12), (4, 17), (5, 22)

• What is the equation of the line?

Copyright 2008 by Pearson Education
17

Loop tables
� What statement in the body would cause the loop to print:

2 7 12 17 22

� To see patterns, make a table of count and the numbers.

� Each time count goes up by 1, the number should go up by 5.

� But count * 5 is too great by 3, so we subtract 3.

count number to print 5 * count

1 2 5

2 7 10

3 12 15

4 17 20

5 22 25

5 * count - 3

2

7

12

17

22

Copyright 2008 by Pearson Education
18

Loop tables question
� What statement in the body would cause the loop to print:

17 13 9 5 1

• Let's create the loop table together.

� Each time count goes up 1, the number printed should ...

� But this multiple is off by a margin of ...

count number to print

1 17

2 13

3 9

4 5

5 1

-4 * count -4 * count + 21

-4 17

-8 13

-12 9

-16 5

-20 1

-4 * count

-4

-8

-12

-16

-20

Copyright 2008 by Pearson Education
19

Nested loops

reading: 2.3

self-check: 22-26
exercises: 10-14

videos: Ch. 2 #4

Copyright 2008 by Pearson Education
20

Redundancy between loops
for (int j = 1; j <= 5; j++) {

System.out.print(j + "\t");
}
System.out.println();

for (int j = 1; j <= 5; j++) {
System.out.print(2 * j + "\t");

}
System.out.println();

for (int j = 1; j <= 5; j++) {
System.out.print(3 * j + "\t");

}
System.out.println();

for (int j = 1; j <= 5; j++) {
System.out.print(4 * j + "\t"){

}
System.out.println();

Output:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

Copyright 2008 by Pearson Education
21

Nested loops
� nested loop: A loop placed inside another loop.

for (int i = 1; i <= 4; i++) {
for (int j = 1; j <= 5; j++) {

System.out.print((i * j) + "\t");
}
System.out.println(); // to end the line

}

� Output:
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

� Statements in the outer loop's body are executed 4 times.

� The inner loop prints 5 numbers each time it is run.

Copyright 2008 by Pearson Education
22

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 10; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:

Copyright 2008 by Pearson Education
23

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print("*");
}
System.out.println();

}

� Output:
*
**

Copyright 2008 by Pearson Education
24

Nested for loop exercise

� What is the output of the following nested for loops?

for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= i; j++) {

System.out.print(i);
}
System.out.println();

}

� Output:
1
22
333
4444
55555
666666

Copyright 2008 by Pearson Education
25

Complex lines
� What nested for loops produce the following output?

....1

...2

..3

.4
5

� We must build multiple complex lines of output using:

� an outer "vertical" loop for each of the lines

� inner "horizontal" loop(s) for the patterns within each line

outer loop (loops 5 times because there are 5 lines)

inner loop (repeated characters on each line)

Copyright 2008 by Pearson Education
26

Outer and inner loop
� First write the outer loop, from 1 to the number of lines.

for (int line = 1; line <= 5; line++) {

...

}

� Now look at the line contents. Each line has a pattern:
� some dots (0 dots on the last line)

� a number

....1

...2

..3

.4

5

Copyright 2008 by Pearson Education
27

Nested for loop exercise

� Make a table to represent any patterns on each line.

....1

...2

..3

.4

5

� To print a character multiple times, use a for loop.

for (int j = 1; j <= 4; j++) {

System.out.print("."); // 4 dots

}

line # of dots

1 4

2 3

3 2

4 1

5 0

-1 * line

-1

-2

-3

-4

-5

-1 * line + 5

4

3

2

1

0

Copyright 2008 by Pearson Education
28

Nested for loop solution

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {
System.out.print(".");

}
System.out.println(line);

}

� Output:
....1
...2
..3
.4
5

Copyright 2008 by Pearson Education
29

Nested for loop exercise

� What is the output of the following nested for loops?
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {
System.out.print(".");

}
for (int k = 1; k <= line; k++) {

System.out.print(line);
}
System.out.println();

}

� Answer:
....1
...22
..333
.4444
55555

Copyright 2008 by Pearson Education
30

Nested for loop exercise
� Modify the previous code to produce this output:

....1

...2.

..3..

.4...
5....

� Answer:
for (int line = 1; line <= 5; line++) {

for (int j = 1; j <= (-1 * line + 5); j++) {
System.out.print(".");

}
System.out. print(line);
for (int j = 1; j <= (line - 1); j++) {

System.out.print(".");
}
System.out.println();

}

Copyright 2008 by Pearson Education
31

Common errors
� Both of the following sets of code produce infinite loops:

for (int i = 1; i <= 10; i++) {
for (int j = 1; i <= 5; j++) {

System.out.print(j);
}
System.out.println();

}

for (int i = 1; i <= 10; i++) {
for (int j = 1; j <= 5; i++) {

System.out.print(j);
}
System.out.println();

}

Copyright 2008 by Pearson Education
14

Building Java Programs
Chapter 2

Lecture 2-3: Loop Figures and Constants

reading: 2.4 - 2.5
self-checks: 27

exercises: 16-17
videos: Ch. 2 #5

Copyright 2008 by Pearson Education
15

Drawing complex figures
y Use nested for loops to produce the following output.

y Why draw ASCII art?
y Real graphics require a lot of finesse
y ASCII art has complex patterns
y Can focus on the algorithms

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

Copyright 2008 by Pearson Education
16

Development strategy
y Recommendations for managing complexity:

1. Write an English description of steps required (pseudo-code)
y use pseudo-code to decide methods

2. Create a table of patterns of characters
y use table to write loops in each method

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

Copyright 2008 by Pearson Education
17

1. Pseudo-code
y pseudo-code: An English description of an algorithm.

y Example: Drawing a 12 wide by 7 tall box of stars

 print 12 stars.
 for (each of 5 lines) {
 print a star.
 print 10 spaces.
 print a star.
 }
 print 12 stars.

* *
* *
* *
* *
* *

Copyright 2008 by Pearson Education
18

Pseudo-code algorithm
1. Line

• # , 16 =, #

2. Top half

• |
• spaces (decreasing)
• <>
• dots (increasing)
• <>
• spaces (same as above)
• |

3. Bottom half (top half upside-down)

4. Line

• # , 16 =, #

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

Copyright 2008 by Pearson Education
19

Methods from pseudocode
public class Mirror {
 public static void main(String[] args) {
 line();
 topHalf();
 bottomHalf();
 line();
 }

 public static void topHalf() {
 for (int line = 1; line <= 4; line++) {
 // contents of each line
 }
 }

 public static void bottomHalf() {
 for (int line = 1; line <= 4; line++) {
 // contents of each line
 }
 }

 public static void line() {
 // ...
 }
}

Copyright 2008 by Pearson Education
20

2. Tables
y A table for the top half:

y Compute spaces and dots expressions from line number

line spaces dots

1 6 0

2 4 4

3 2 8

4 0 12

line spaces line * -2 + 8 dots 4 * line - 4

1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

Copyright 2008 by Pearson Education
21

3. Writing the code
y Useful questions about the top half:

y What methods? (think structure and redundancy)
y Number of (nested) loops per line?

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

Copyright 2008 by Pearson Education
22

Partial solution
// Prints the expanding pattern of <> for the top half of the figure.
public static void topHalf() {
 for (int line = 1; line <= 4; line++) {
 System.out.print("|");

 for (int space = 1; space <= (line * -2 + 8); space++) {
 System.out.print(" ");
 }

 System.out.print("<>");

 for (int dot = 1; dot <= (line * 4 - 4); dot++) {
 System.out.print(".");
 }

 System.out.print("<>");

 for (int space = 1; space <= (line * -2 + 8); space++) {
 System.out.print(" ");
 }

 System.out.println("|");
 }
}

Copyright 2008 by Pearson Education
23

Class constants
and scope

reading: 2.4
self-check: 28
exercises: 11

videos: Ch. 2 #5

Copyright 2008 by Pearson Education
24

Scaling the mirror
y Let's modify our Mirror program so that it can scale.

y The current mirror (left) is at size 4; the right is at size 3.

y We'd like to structure the code so we can scale the figure
by changing the code in just one place.

#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

#============#
| <><> |
| <>....<> |
|<>........<>|
|<>........<>|
| <>....<> |
| <><> |
#============#

Copyright 2008 by Pearson Education
25

Limitations of variables
y Idea: Make a variable to represent the size.

y Use the variable's value in the methods.

y Problem: A variable in one method can't be seen in others.

public static void main(String[] args) {
 int size = 4;
 topHalf();
 printBottom();
}

public static void topHalf() {
 for (int i = 1; i <= size; i++) { // ERROR: size not found
 ...
 }
}

public static void bottomHalf() {
 for (int i = max; i >= 1; i--) { // ERROR: size not found
 ...
 }
}

Copyright 2008 by Pearson Education
26

Variable scope
y scope: The part of a program where a variable exists.

y From its declaration to the end of the { } braces
y A variable declared in a for loop exists only in that loop.

y A variable declared in a method exists only in that method.

public static void example() {
 int x = 3;
 for (int i = 1; i <= 10; i++) {
 System.out.println(x);
 }
 // i no longer exists here
} // x ceases to exist here

 x's scope i's

 s
co

pe

Copyright 2008 by Pearson Education
27

Scope implications
y Variables without overlapping scope can have same name.

for (int i = 1; i <= 100; i++) {
 System.out.print("/");
}
for (int i = 1; i <= 100; i++) { // OK
 System.out.print("\\");
}
int i = 5; // OK: outside of loop's scope

y A variable can't be declared twice or used out of its scope.

for (int i = 1; i <= 100 * line; i++) {
 int i = 2; // ERROR: overlapping scope
 System.out.print("/");
}
i = 4; // ERROR: outside scope

Copyright 2008 by Pearson Education
28

Class constants

y class constant: A value visible to the whole program.
y value can only be set at declaration
y value can't be changed while the program is running

y Syntax:
 public static final type name = value;

y name is usually in ALL_UPPER_CASE

y Examples:
 public static final int DAYS_IN_WEEK = 7;
 public static final double INTEREST_RATE = 3.5;
 public static final int SSN = 658234569;

Copyright 2008 by Pearson Education
29

Constants and figures
y Consider the task of drawing the following scalable figure:

+/\/\/\/\/\/\/\/\/\/\+
| |
| |
| | Multiples of 5 occur many times
| |
| |
+/\/\/\/\/\/\/\/\/\/\+

+/\/\/\/\+
| |
| | The same figure at size 2
+/\/\/\/\+

Copyright 2008 by Pearson Education
30

Repetitive figure code
public class Sign {

 public static void main(String[] args) {
 drawLine();
 drawBody();
 drawLine();
 }

 public static void drawLine() {
 System.out.print("+");
 for (int i = 1; i <= 10; i++) {
 System.out.print("/\\");
 }
 System.out.println("+");
 }

 public static void drawBody() {
 for (int line = 1; line <= 5; line++) {
 System.out.print("|");
 for (int spaces = 1; spaces <= 20; spaces++) {
 System.out.print(" ");
 }
 System.out.println("|");
 }
 }
}

Copyright 2008 by Pearson Education
31

Adding a constant
public class Sign {
 public static final int HEIGHT = 5;

 public static void main(String[] args) {
 drawLine();
 drawBody();
 drawLine();
 }

 public static void drawLine() {
 System.out.print("+");
 for (int i = 1; i <= HEIGHT * 2; i++) {
 System.out.print("/\\");
 }
 System.out.println("+");
 }

 public static void drawBody() {
 for (int line = 1; line <= HEIGHT; line++) {
 System.out.print("|");
 for (int spaces = 1; spaces <= HEIGHT * 4; spaces++) {
 System.out.print(" ");
 }
 System.out.println("|");
 }
 }
}

Copyright 2008 by Pearson Education
32

Complex figure w/ constant
y Modify the Mirror code to be resizable using a constant.

A mirror of size 4:
#================#
| <><> |
| <>....<> |
| <>........<> |
|<>............<>|
|<>............<>|
| <>........<> |
| <>....<> |
| <><> |
#================#

A mirror of size 3:
#============#
| <><> |
| <>....<> |
|<>........<>|
|<>........<>|
| <>....<> |
| <><> |
#============#

Copyright 2008 by Pearson Education
33

Using a constant
y Constant allows many methods to refer to same value:

public static final int SIZE = 4;

public static void main(String[] args) {
 topHalf();
 printBottom();
}

public static void topHalf() {
 for (int i = 1; i <= SIZE; i++) { // OK
 ...
 }
}

public static void bottomHalf() {
 for (int i = SIZE; i >= 1; i--) { // OK
 ...
 }
}

Copyright 2008 by Pearson Education
34

Loop tables and constant
y Let's modify our loop table to use SIZE

y This can change the b in y = mx + b

#================#
| <><> | #============#
<>....<>		<><>
<>........<>		<>....<>
<>............<>		<>........<>
<>............<>		<>........<>
<>........<>		<>....<>
<>....<>		<><>
<><>	#============#	
#================#

SIZE line spaces -2*line + (2*SIZE) dots 4*line - 4

4 1,2,3,4 6,4,2,0 -2*line + 8 0,4,8,12 4*line - 4

3 1,2,3 4,2,0 -2*line + 6 0,4,8 4*line - 4

SIZE line spaces dots

4 1,2,3,4 6,4,2,0 0,4,8,12

3 1,2,3 4,2,0 0,4,8

SIZE line spaces dots

4 1,2,3,4 6,4,2,0 -2*line + 8 0,4,8,12 4*line - 4

3 1,2,3 4,2,0 -2*line + 6 0,4,8 4*line - 4

Copyright 2008 by Pearson Education
35

Partial solution
public static final int SIZE = 4;

// Prints the expanding pattern of <> for the top half of the figure.
public static void topHalf() {
 for (int line = 1; line <= SIZE; line++) {
 System.out.print("|");

 for (int space = 1; space <= (line * -2 + (2*SIZE)); space++) {
 System.out.print(" ");
 }

 System.out.print("<>");

 for (int dot = 1; dot <= (line * 4 - 4); dot++) {
 System.out.print(".");
 }

 System.out.print("<>");

 for (int space = 1; space <= (line * -2 + (2*SIZE)); space++) {
 System.out.print(" ");
 }

 System.out.println("|");
 }
}

Copyright 2008 by Pearson Education
36

Observations about constant
y The constant can change the "intercept" in an expression.

y Usually the "slope" is unchanged.

public static final int SIZE = 4;

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
 System.out.print(" ");
}

y It doesn't replace every occurrence of the original value.

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
 System.out.print(".");
}

