
2



3

 Write a constructor for LinkedIntList that accepts an int
n parameter and makes a list of the number from 0 to n

 new LinkedIntList(3) :

data next

1

LinkedIntList(int n)

front = 
data next

3

data next

0

data next

2



4

addSorted

 Write a method addSorted that accepts an int as a 

parameter and adds it to a sorted list in sorted order.

 Before addSorted(17) :

 After addSorted(17) :

front = 
data next

-4

data next

8

data next

22

element 0 element 1 element 2

front = 
data next

-4

data next

17

data next

22

element 0 element 2 element 3

data next

8

element 1



7

changing a list
 There are only two ways to change a linked list:

 Change the value of front (modify the front of the list)

 Change the value of <node>.next (modify middle or end of list 

to point somewhere else)

 Implications:

 To add in the middle, need a reference to the previous node

 Front is often a special case



15

Common cases
 middle: "typical" case in the middle of an existing list

 back: special case at the back of an existing list

 front: special case at the front of an existing list

 empty: special case of an empty list



16


