
2

3

Linked node problem 3
 What set of statements turns this picture:

 Into this?

data next

10

data next

20
list1

data next

30

data next

40
list2

data next

10

data next

20
list1

data next

40
list2

data next

30

4

Linked node problem 3
 How many ListNode variables?

 Which variables change?

data next

10

data next

20
list1

data next

30

data next

40
list2

data next

10

data next

20
list1

data next

40
list2

data next

30

A

B C

E F

D

E

D

C

6

Linked node question
 Suppose we have a long chain of list nodes:

 We don't know exactly how long the chain is.

 How would we print the data values in all the nodes?

data next

10

data next

990
list

...

data next

20

7

Algorithm pseudocode
Start at the front of the list.

While (there are more nodes to print):

Print the current node's data.

Go to the next node.

 How do we walk through the nodes of the list?

list = list.next; // is this a good idea?

data next

10

data next

990
list

...

data next

20

8

Traversing a list?
 One (bad) way to print every value in the list:

while (list != null) {

System.out.println(list.data);

list = list.next; // move to next node

}

 What's wrong with this approach?

 (It loses the linked list as it prints it!)

data next

10

data next

990
list

...

data next

20

9

A current reference

 Don't change list. Make another variable, and change it.

 A ListNode variable is NOT a ListNode object

ListNode current = list;

 What happens to the picture above when we write:

current = current.next;

data next

10

data next

990
list

...

data next

20

current

11

Traversing a list correctly
 The correct way to print every value in the list:

ListNode current = list;

while (current != null) {

System.out.println(current.data);

current = current.next; // move to next node

}

 Changing current does not damage the list.

data next

10

data next

990
list

...

data next

20

12

Linked List vs. Array

 Print list values:

ListNode list= ...;

ListNode current = list;

while (current != null) {

System.out.println(current.data);

current = current.next;

}

 Similar to array code:

int[] a = ...;

int i = 0;

while (i < a.length) {

System.out.println(a[i]);

i = i + 1;

}

Description Array Code Linked List Code

Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i=i+1; current = current.next;

14

A LinkedIntList class

 Let's write a collection class named LinkedIntList.

 Has the same methods as ArrayIntList:

 add, add, get, indexOf, remove, size, toString

 The list is internally implemented as a chain of linked nodes

 The LinkedIntList keeps a reference to its front as a field

 null is the end of the list; a null front signifies an empty list

front

add(value)
add(index, value)
indexOf(value)
remove(index)
size()
toString()

LinkedIntList

ListNode ListNode ListNode

data next

42

data next

-3

data next

17

element 0 element 1 element 2

16

pollev.com/cse143

 Suppose our list had the contents

 Practice simulating the code we wrote and tell us what the
result will look like when we call list.add(40);

data next

10

data next

30
front

data next

20

Options
• [10, 20, 30]
• [10, 20, 40]
• [10, 20, 40, 30]
• [10, 20, 30, 40]
• Error

public void add(int value) {

ListNode curr = front;

while (curr != null) {

curr = curr.next;

}

curr = new ListNode(value);

}

17

data next

10

data next

20
front

data next

30

Before/After
 Before

 After

data next

10

data next

20
front

data next

30

data next

40

24

changing a list
 There are only two ways to change a linked list:

 Change the value of front (modify the front of the list)

 Change the value of <node>.next (modify middle or end of list

to point somewhere else)

 Implications:

 To add in the middle, need a reference to the previous node

 Front is often a special case

