
Building Java Programs

Chapter 14

stacks and queues

reading: 14.1-14.4

2

Warm up! pollev.com/cse143

3

Abstract data types (ADTs)
 abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.

 Describes what a collection does, not how it does it

 We don't know exactly how a the collections is
implemented, and we don't need to.

 We just need to understand the idea of the collection and what
operations it can perform

4

Stacks and queues
 Some collections are constrained so clients can only use

optimized operations

 stack: retrieves elements in reverse order as added

 queue: retrieves elements in same order as added

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

5

Stack Example

push pop

bottom

top

6

Stacks
 stack: A collection based on the principle of adding

elements and retrieving them in the opposite order.

 Last-In, First-Out ("LIFO")

 Elements are stored in order of insertion.

 We do not think of them as having indexes.

 Client can only add/remove/examine
the last element added (the "top").

 basic stack operations:

 push: Add an element to the top.

 pop: Remove the top element.

 peek: Examine the top element.

stack

top 3

2

bottom 1

pop, peekpush

7

Stacks in computer science
 Programming languages and compilers:

 method calls are placed onto a stack (call=push, return=pop)

 compilers use stacks to evaluate expressions

 Matching up related pairs of things:

 find out whether a string is a palindrome

 examine a file to see if its braces { } match

 convert "infix" expressions to pre/postfix

 Sophisticated algorithms:

 searching through a maze with "backtracking"

 many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

8

Class Stack

Stack<String> s = new Stack<String>();

s.push("a");

s.push("b");

s.push("c"); // bottom ["a", "b", "c"] top

System.out.println(s.pop()); // "c"

 Stack has other methods that are off-limits (not efficient)

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements

13

Queue Example

add

remove

front back

14

Queues
 queue: Retrieves elements in the order they were added.

 First-In, First-Out ("FIFO")

 Elements are stored in order of
insertion but don't have indexes.

 Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

 basic queue operations:

 add (enqueue): Add an element to the back.

 remove (dequeue): Remove the front element.

 peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

15

Queues in computer science
 Operating systems:

 queue of print jobs to send to the printer

 queue of programs / processes to be run

 queue of network data packets to send

 Programming:

 modeling a line of customers or clients

 storing a queue of computations to be performed in order

 Real world examples:

 people on an escalator or waiting in a line

 cars at a gas station (or on an assembly line)

16

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();

q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

 IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.

 This is because Queue is an interface

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

