
2

3

Week 2: 9/30-10/4
 Monday

 Client of Collections: Lists and Sets

 Tuesday

 Style

 Wednesday

 Stacks and Queues

 Thursday

 Stacks and Queues

 Friday

 Classes, Objects, and References

4

Collections
 collection: an object that stores data; a.k.a. "data

structure"

 the objects stored are called elements

 some collections maintain an ordering; some allow
duplicates

 typical operations: add, remove, clear, contains (search),
size

 examples found in the Java class libraries:
(covered in this course!)

 ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue

 all collections are in the java.util package

import java.util.*;

5

Lists

 list: a collection of elements with 0-based indexes

 elements can be added to the front, back, or elsewhere

 a list has a size (number of elements that have been added)

6

List methods
List<String> list = new ArrayList<String>(); // empty

List<Integer> list2 = new LinkedList<Integer>();

list.add(“hello”);

list.add(“goodbye”);

System.out.println(list); // [“hello”, “goodbye”]

add(value) adds the given value to the list

add(index, value) Adds the given value at the given index to the list

contains(value) returns true if the given value is found in this list

indexOf(value) returns the index of the given value in the list (-1 if not found)

remove(value) removes the given value from the list

size() returns the number of elements in list

isEmpty() returns true if the list's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

7

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

List<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

...

double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

8

Exercise
 Write a program that counts the number of unique words in

a large text file (say, Moby Dick or the King James Bible).

 Store the words in a collection and report the # of unique
words.

 Once you've created this collection, allow the user to search it
to see whether various words appear in the text file.

 What collection is appropriate for this problem?

10

Sets (11.2)
 set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:

 add, remove, search (contains)

 We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

11

Set implementation

 in Java, sets are represented by Set type in java.util

 Set is implemented by HashSet and TreeSet classes

 TreeSet: implemented using a "binary search tree";

pretty fast: O(log N) for all operations
elements are stored in sorted order

 HashSet: implemented using a "hash table" array;

very fast: O(1) for all operations
elements are stored in unpredictable order

Note: This O(something) notation won’t be covered until next week. It’s okay not to
know what it means yet.

12

Set methods
Set<String> set = new TreeSet<String>(); // empty

Set<Integer> set2 = new HashSet<Integer>();

set.add(“hello”);

set.add(“goodbye”);

set.add(“hello”);

System.out.println(set); // [“goodbye”, “hello”]

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

