
2

3

Road Map - Quarter
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList🛠
• LinkedList 🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Two Not-so-Similar Problems

5

Exercise: fourAB
 Write a method fourAB that prints out all strings of length

4 composed only of a’s and b’s

 Example Output

aaaa baaa

aaab baab

aaba baba

aabb babb

abaa bbaa

abab bbab

abba bbba

abbb bbbb

6

Decision Tree

a

aa

aaa

aaab

aab

aaba aabbaaaa

ab
…

b
…

7

pollev.com/cse143

 Suppose we had the following method:

public static void mystery(String soFar) {

if (soFar.length() == 3) {

System.out.println(soFar);

} else {

mystery(soFar + “d”);

mystery(soFar + “a”);

mystery(soFar + “b”);

}

}

 What is the fourth line of output of the call mystery(“”);
 This means you can stop once you’ve found 4 lines of output

8

9

10

Exercise: Dice rolls
 Write a method diceRoll that accepts an integer

parameter representing a number of 6-sided dice to roll,
and output all possible arrangements of values that could
appear on the dice.

diceRoll(2); diceRoll(3);

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[1, 1, 1]

[1, 1, 2]

[1, 1, 3]

[1, 1, 4]

[1, 1, 5]

[1, 1, 6]

[1, 2, 1]

[1, 2, 2]

...

[6, 6, 4]

[6, 6, 5]

[6, 6, 6]

11

A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die
...

......

...

... ...

... ...

12

Examining the problem
 We want to generate all possible sequences of values.

for (each possible first die value):

for (each possible second die value):

for (each possible third die value):

...

print!

 This is called a depth-first search

 How can we completely explore such a large search space?

16

Backtracking
 backtracking: Finding solution(s) by trying partial

solutions and then abandoning them if they are not
suitable.

 a "brute force" algorithmic technique (tries all paths)

 often implemented recursively

Applications:

 producing all permutations of a set of values

 parsing languages

 games: anagrams, crosswords, word jumbles, 8 queens

 combinatorics and logic programming

18

Backtracking strategies
 When solving a backtracking problem, ask these questions:

 What are the "choices" in this problem?

 What is the "base case"? (How do I know when I'm out of
choices?)

 How do I "make" a choice?

 Do I need to create additional variables to remember my choices?

 Do I need to modify the values of existing variables?

 How do I explore the rest of the choices?

 Do I need to remove the made choice from the list of choices?

 Once I'm done exploring, what should I do?

 How do I "un-make" a choice?

