

CS Concepts
Client/Implementer
Efficiency

Recursion

Regular Expressions
Grammars

Sorting

Data Structures

Road Map - Quarter

Java Language

Lists
Stacks
Queues
Sets
Maps

« EXxceptions
 Interfaces
« References

Java Collections

Arrays

ArrayList &
LinkedList &R
Stack

TreeSet / TreeMap
HashSet / HashMap

Two Not-so-Similar Problems

Exercise: fourAB

*» Write a method fourAB that prints out all strings of length

4 composed only of a’'s and b’s

e Example Output

aaaa baaa
aaab baab
aaba baba
aabb babb
abaa bbaa
abab bbab
abba bbba
abbb bbbb

Decision Tree

dad

ddad

aaab

aa ab
‘* =
aab
-
aaba aabb

i —
@ Poll Everywhere pollev.com/csel143

* Suppose we had the following method:

publicy s abraisordemysberytshringrsolar)ad

3 il e i s U i =l O R T oo —dgiie oy V|
Sviskomaoms e n b rElisoR s e
} else {

my:sterytsaoar: ok g e
mystery(soFar + “a”);
1y e VA o A s tranken el o Ry s
}
}
* What is the fourth line of output of the call mystery(™");
« This means you can stop once you‘ve found 4 lines of output

Dice rolls

* Write a method diceRoll that accepts an integer

Exercise

parameter representing a number of 6-sided dice to roll,

and output all possible arrangements of values that could

appear on the dice.

el e Ria Rl ge

S Rl

,,,,,,,,,,,,

Lo N e I e B e A e |

””””””

—_ e e e) e e e]]] L

[B s T cs B et OO i A e B s O s Y sy B s T s B e |

,,,,,,,,,,,,

T L T I I 1 S R N S S—

[B s T st B e e T e B s Y s Y s S s T s A |

,,,,,,,,,,,,

—_ e e e e e e e e))

10

/]]
A decision tree
chosen | available
- 4 dice
/ >
13 diceJ 2 | 3dice
1, 1]2dice | [1, 22 dice][1, 32 dice |[1, 4]2 dice
1,1, 1 |1die 1,1, 2 |1die 1,1,3 |1die 1,4,1 |1die
1,1,1,1 1,1,1,2 1,1,3,1 1,1,3,2

11

Examining the problem

* We want to generate all possible sequences of values.

for (each possible first die value):

for (each possible second die value):
for (each possible third die value):

s

print!

This is called a depth-first search

How can we completely explore such a large search space?

12

Backtracking

* backtracking: Finding solution(s) by trying partial
solutions and then abandoning them if they are not
suitable.

a "brute force" algorithmic technique (tries all paths)
often implemented recursively

Applications:
producing all permutations of a set of values
parsing languages
games: anagrams, crosswords, word jumbles, 8 queens
combinatorics and logic programming

16

Backtracking strategies

e

* When solving a backtracking problem, ask these questions:

What are the "choices" in this problem?

- What is the "base case"? (How do I know when I'm out of
choices?)

How do I "make" a choice?
« Do I need to create additional variables to remember my choices?
« Do I need to modify the values of existing variables?

How do I explore the rest of the choices?
- Do I need to remove the made choice from the list of choices?

Once I'm done exploring, what should I do?

How do I "un-make" a choice?

18

