handout #20
CSE143—Computer Programming I1

Programming Assignment #7
due: Thursday, 11/20/25, 11 pm

This assignment will give you practice with binary trees. You are to implement a yes/no guessing game. The
idea is that you construct a binary tree where each leaf has the name of an object and each branch node has a
yes/no question that distinguishes between the objects. It’s like a big game of 20 questions where each question
is a yes/no question.

Each round of the game begins by you (the human player) thinking of an object. The computer will try to guess
your object by asking you a series of yes or no questions. Eventually the computer will have asked enough
questions that it thinks it knows what object you are thinking of. It will make a guess about what your object is.
If this guess is correct, the computer wins; if not, you win.

The computer keeps track of a binary tree whose nodes represent questions and answers. (Every node's data is a
string representing the text of the question or answer.) A “question” node contains a left “yes” subtree and a
right “no” subtree. An “answer” node is a leaf. The idea is that this tree can be traversed to ask the human
player a series of questions.

For example, in the tree below, the computer would begin the game by asking the player, “Is it an animal?” If
the player says “yes,” the computer goes left to the “yes” subtree and then asks the user, “Can it fly?” If the
user had instead said “no,” the computer would go right to the “no” subtree and then ask the user, “Does it have
wheels?”

This pattern continues until the game reaches a leaf “answer” node. Upon reaching an answer node, the
computer asks whether that answer is the correct answer. If so, the computer wins.

(left = “yes”) overall root (right = “no”

| Is it an animal? |

—

| Can it fly? | | Does it have wheels? |

bird | Does it have a tail? | | Is it nice? |

Initially the computer is not very intelligent, but it grows more intelligent each time it loses a game. If the
computer's answer guess is incorrect, you must give it a new question it can ask to help it in future games. For
example, suppose that the player is thinking of a cat. He will end up at the leaf node for mouse. The computer
will guess mouse and the user will say that the guess is wrong. At that point, the computer asks what the user
was thinking of (“cat”) and a question to distinguish it from a mouse (the user might say, “Does it meow?”’) and
what the answer is .

Page #1

The computer takes the new information from a lost game and uses it to replace the old incorrect answer node
with a new question node that has the old incorrect answer and new correct answer as its children:

(lefi = "yes") overall root (right = "no")

|

| Is it an animal? |

/ \

| Can it fly? | | Does it have wheels? |

bird | Doe‘s} have a\t;ail? | | Is it nice? |

[Does it meow? |

cat/| I\

mouse

Your program also have to be able to write the tree to an output file and read it back in. That way your question
tree can grow each time a user runs the program. To be able to read and write the tree, we need a set of rules for
how to represent the tree which we’ll refer to as the standard format for a question tree. A tree is specified by a
nonempty sequence of line pairs, one for each node of the tree. The first line of each pair should contain either
the text “Q:” to indicate that it is a question node (i.e., a branch node) or the text “A:” to indicate that it is an
answer node (i.e., a leaf node). The second line of each pair should contain the text for that node (the question
or answer). The nodes should appear in preorder (i.e., in the order produced by a preorder traversal of the tree).

This program involves interaction with the user. As always, we will use a Scanner linked to System.in to do
this. But with interactive programs, you don’t want to have more than one Scanner linked to System.in. For
that reason, in this program your class will construct the console Scanner. It turns out that all that the main
method needs is the ability to ask a yes/no question of the user. So the interface for your class will include a
method yesTo that main will call when it wants to interact with the user. You must construct a single console
Scanner that you store in a data field and use throughout your class. All calls to the console Scanner should be
on the nextLine method so that you always read an entire line of user input.

The details of the yesTo method are fairly uninteresting, so it is being provided for you (this code assumes a
data field called “console” has been initialized). You are to include this method without modification in your
QuestionTree class.

// post: asks the user a question, forcing an answer of "y " or "n";

// returns true if the answer was yes, returns false otherwise
public boolean yesTo (String prompt) {
System.out.print (prompt + " (y/n)?2 ");
String response = console.nextLine () .trim() .toLowerCase();
while (!response.equals("y") && !response.equals("n")) {
System.out.println("Please answer y or n.");
System.out.print (prompt + " (y/n)? ");
response = console.nextLine().trim() .toLowerCase();

}

return response.equals("y");

}

The main program is called QuestionMain.java. You are to write a class called QuestionNode.java (your tree
node class) and QuestionTree.java. In defining your tree node class, you should decide what data fields you
need for solving this particular problem. In other words, you don’t have to use a generic binary tree; you can

Page #2

use one that is highly specific to this program. Your node class should have at least one constructor. It can
have more than one, but don’t include any constructors that you don’t actually use in your QuestionTree class.

Your QuestionTree class should store the binary tree and should have the following public methods:

Method Description
This method should construct a question tree
QuestionTree() with one leaf node representing the object
“computer”.

This method will be called if the client wants to
replace the current tree by reading another tree
from a file. Your method will be passed a
Scanner that is linked to the file and should
replace the current tree with a new tree using
the information in the file. Assume the file is
legal and in standard format. Read entire lines
of input using calls on nextLine.

void read(Scanner input)

This method will be called if the client wants to
void write(PrintStream output) | store the current tree to an output file. The
given PrintStream will be open for writing.

In this method you should use the current tree
to ask the user a series of yes/no questions until
you either guess their object correctly or until
you fail, in which case you expand the tree to
include their object and a new question to
distinguish their object from the others.

void askQuestions()

This method asks the given question until the

(Y4 [

boolean yesTo(String prompt) user types “y” or “n.” It returns true if “y”,
false if “n”.

A log of execution is provided at the end of this write-up showing how the program should interact using your
QuestionTree class. You are to exactly reproduce the format of this log. Many students find it easier to test and
debug the write method before attempting the read method because it is simpler and easier to verify.

In terms of correctness, your class must provide all of the functionality described above. In terms of style, we
will be grading on your use of comments, good variable names, consistent indentation and good coding style to
implement these operations. Remember that you will lose points if you declare variables as data fields that can
instead be declared as local variables. You should also avoid extraneous cases (e.g., don’t make something into
a special case if it doesn’t have to be).

You might be tempted in writing this program to “morph” what used to be an answer node of the tree into a
question node. This is considered bad style. Question nodes and answer nodes are fundamentally different
kinds of data. You can rearrange where they appear in the tree, but you shouldn’t turn a former answer node
into a question node just to simplify the programming you need to perform.

Y ou should name your files QuestionNode.java and QuestionTree.java and you should turn it in electronically
from the “homework™ link on the class web page. A collection of files needed for the assignment is included on
the web page as ass7.zip. You will need to have QuestionMain in the same directory as your files in order to
run QuestionMain. The folder contains a version of question.txt, although you should be able to generate such a

Page #3

file from your own program. The folder also contains a file called bigquestion.txt which contains a large data
file of approximately 10 thousand animal names obtained from http://animalgame.com/. Also keep in mind that
you can once again use the output comparison tool to check your solution.

Sample execution (short file)

Welcome to the cseld43 question program.

Do you want to read in the previous tree? (y/n)? n

Please think of an object for me to guess.

Would your object happen to be computer? (y/n)? n
What is the name of your object? dog

Please give me a yes/no question that
distinguishes between your object

and mine--> Is it an animal?

And what is the answer for your object? (y/n)? y

Do you want to go again? (y/n)? y

Please think of an object for me to guess.

Is it an animal? (y/n)? y

Would your object happen to be dog? (y/n)? n
What is the name of your object? frog

Please give me a yes/no question that
distinguishes between your object

and mine--> Does it hop?

And what is the answer for your object? (y/n)? y

Do you want to go again? (y/n)? y

Please think of an object for me to guess.
Is it an animal? (y/n)? y

Does it hop? (y/n)? n

Would your object happen to be dog? (y/n)? y
Great, I got it right!

Do you want to go again? (y/n)? n

Sample data file question.txt (after above log)
Q:

Is it an animal?
Q:

Does it hop?

A:

frog

A:

dog

A:

computer

Page #4

http://animalgame.com/

