
Page 1 of 4

handout #5

CSE143—Computer Programming II

Programming Assignment #3

due: Thursday, 10/16/25, 11 pm

This assignment will give you practice with linked lists. You are to write a class AssassinManager that allows a

client to manage a game of assassin. Each person playing assassin has a particular target that he/she is trying to

assassinate. One of the things that makes the game more interesting to play is that initially each person knows

only who they are assassinating (they don't know who is trying to assassinate them nor do they know who other

people are trying to assassinate). You are working on a program for the “game administrator” who needs to

keep track of who is stalking whom and the history of who killed whom.

The game of assassin is played as follows. You start out with a group of people who want to play the game.

For example, let's say that we have five people playing whose names are Joe, Sally, Jim, Carol and Chris. A

circular chain of assassination targets is established (what is called the “kill ring” in the sample log of

execution). For example, we might decide Joe should stalk Sally, Sally should stalk Jim, Jim should stalk

Carol, Carol should stalk Chris and Chris should stalk Joe.

Joe --> Sally --> Jim --> Carol --> Chris

 ^ |

 | V

 +--------<--------<---------<--------+

When someone is assassinated, the chain needs to be relinked by “skipping” that person. For example, suppose

that Jim is assassinated first (obviously this would have been by Sally). Sally needs a new target, so we give

her Jim's target: Carol. Thus, the chain becomes:

 +-------->--------+

 ^ |

 | V

Joe --> Sally Jim Carol --> Chris

 ^ |

 | V

 +--------<--------<---------<--------+

The main program has been written for you and is called AssassinMain. It reads a file of names, shuffles the

names, and constructs an object of type AssassinManager. You are writing the AssassinManager class. The

main program then asks the user for the names of the victims in order until the game is over (until there is just

one player left alive), calling methods of the AssassinManager class to carry out the tasks involved in

administering the game.

Your class will keep track of two different lists: the list of those currently alive and the list of those who are

dead. Each is to be stored in a linked list. We are requiring you to use our node class which is called

AssassinNode. The AssassinNode class has three data fields: one for the name of the person, one for the name

of the killer and a “next” field to keep track of the next value in the list. The AssassinNode class appears at the

end of this write-up.

The constructor for the AssassinManager class will be passed an object of type List<String>. You can

manipulate this object the same way you would manipulate an ArrayList<String>. So you can call methods like

size and get and you can write a for-each loop using this object, but you are not allowed to modify it. You will

need to include the following line at the beginning of your class to have access to List:

import java.util.*;

Page 2 of 4

Your class should have the following public methods.

Method Description

AssassinManager(List<String> names) This is your method for constructing an assassin manager

object. It should add the names from the list into the kill ring in

the same order in which they appear in the list. For example, if

the list contains {“John”, “Sally”, “Fred”}, then in the initial

kill ring we should see that John is stalking Sally who is

stalking Fred who is stalking John (reported in that order). You

may assume that the names are nonempty strings and that there

are no duplicate names (ignoring case). Your method should

throw an IllegalArgumentException if the list is empty.

void printKillRing() This method should print the names of the people in the kill

ring, one per line, indented four spaces, with output of the form

“<name> is stalking <name>”. If there is only one person in

the ring, it should report that the person is stalking themselves

(e.g., “John is stalking John”).

void printGraveyard() This method should print the names of the people in the

graveyard, one per line, indented four spaces, with output of the

form “<name> was killed by <name>”. It should print the

names in reverse kill order (most recently killed first, then next

more recently killed, and so on). It should produce no output if

the graveyard is empty.

boolean killRingContains(String name) This should return true if the given name is in the current kill

ring and should return false otherwise. It should ignore case in

comparing names.

boolean graveyardContains(String name) This should return true if the given name is in the current

graveyard and should return false otherwise. It should ignore

case in comparing names.

boolean gameOver() This should return true if the game is over (i.e., if the kill ring

has just one person in it) and should return false otherwise.

String winner() This should return the name of the winner of the game. It

should return null if the game is not over.

void kill(String name) This method records the killing of the person with the given

name, transferring the person from the kill ring to the

graveyard. This operation should not change the kill ring order

of printKillRing (i.e., whoever used to be printed first should

still be printed first unless that’s the person who was killed, in

which case the person who used to be printed second should

now be printed first). It should throw an

IllegalArgumentException if the given name is not part of the

current kill ring and it should throw an IllegalStateException if

the game is over (it doesn’t matter which it throws if both are

true). It should ignore case in comparing names.

Page 3 of 4

This is meant to be an exercise in implementing linked lists that are like the built-in LinkedList<E> (you are not

allowed to use the built-in structure because you are implementing your own). In implimenting this structure,

you will be required to adhere to the following rules:

• You must use our AssassinNode class for your lists. You are not allowed to modify it.

• You may not construct any arrays or ArrayLists or other data structures to solve this problem. You

must solve it using linked sequences of AssassinNode objects. You can examine the list of Strings

passed to the constructor, but you are not allowed to modify it.

• If there are n names in the list of Strings passed to your constructor, you should ask for a new

AssassinNode exactly n times. This means that as people are killed, you have to move their node

from the kill ring to the graveyard without creating any new nodes.

The main effect of the rules above is that your constructor will create an initial set of nodes (the initial kill ring)

and then your class will not create any more nodes for the rest of the program execution. That means that you

need to solve the problem of moving people from the kill ring to the graveyard by rearranging references, not by

creating new nodes. You are allowed to declare local variables of type AssassinNode (like “current” and “prev”

in handout 5) because otherwise you can’t solve the problem at all. Local variables of type AssassinNode are

not the same as node objects and, therefore, don’t count against the limit of n nodes.

For this assignment we are specifying what data fields you should have in your class. You should have exactly

two data fields: a reference to the front of the kill ring and a reference to the front of the graveyard. You are not

allowed to have any other data fields.

In lecture and section we have been looking at nodes of type ListNode that have just two fields: a field called

data of type int and a field called next that points to the next value in the list. The AssassinNode class has three

fields. The first two are fields for storing data called name and killer (they are used to store the name of a

player and the name of the person who killed that player). The third field is called next and it serves the same

purpose as the next field in the ListNode class.

For this particular program, it is intuitive to store the kill ring in what is known as a “circular” linked list.

Normally lists have the value “null” stored in the next field of the last node of the list. Such lists are known as

“null terminated” lists. In a circular list, the final element stores a reference to the first element in the list. But

most novices find it difficult to work with a circular list, especially since all of our examples involve null-

terminated lists. There is no need to use a circular list to solve the problem, so you are encouraged to solve

it with a null-terminated list. If you feel strongly that you want to attempt the circular list, you are allowed to

do so, but it is likely to make the program harder to write.

You will want to write your own testing program (AssassinMain, for example, never generates any of the

exceptions you have to handle). When your class is in good shape, you can use the AssassinMain program to

make sure it works properly. A log of execution for AssassinMain appears at the end of this write-up. Your

program should exactly reproduce the format and general behavior demonstrated in the log.

In terms of correctness, your class must provide all of the functionality described above and satisfy all of the

constraints mentioned in this writeup. In terms of style, we will be grading on your use of comments, good

variable names, consistent indentation and good coding style to implement these operations.

You should name your file AssassinManager.java and should turn it in electronically from the “homework” link

on the class web page. A collection of files needed for the assignment is included on the web page, including

several name files and several logs of execution. You will need to have AssassinNode.java, AssassinMain.java,

and whatever names file you are using all in the same directory as your AssassinManager.java in order to run

AssassinMain. You can use the output comparison tool to check your output.

Page 4 of 4

Using jGRASP
In jGRASP you can use a structure viewer to see what your list looks like (you do so by dragging one of your

fields from the debug window outside the window and jGRASP will launch a viewer). This viewer will show

you the structure of the list, but won’t show you the contents of the nodes. You can fix this by selecting the

wrench icon (“Configure the structure to view mapping”). Under “Value Expressions” say:

node.name

Then click on apply and you should see the names in the nodes. You can also adjust settings like the Width (to

see more of the name) or Scale (to stretch or shrink the diagram).

AssassinNode Class
// The AssassinNode class is used to store the information for one

// player in the game of assassin. Initially the "killer" field

// is set to null, but when the person is killed, this should be

// set to the name of the killer.

public class AssassinNode {

 public String name; // this person's name

 public String killer; // name of who killed this person

 public AssassinNode next; // next node in the list

 // constructs a node with the given name and a null link

 public AssassinNode(String name) {

 this(name, null);

 }

 // constructs a node with the given name and link

 public AssassinNode(String name, AssassinNode next) {

 this.name = name;

 this.killer = null;

 this.next = next;

 }

}

Log of execution (user input underlined)
Welcome to the CSE143 Assassin Manager

What name file do you want to use this time? names3.txt

Do you want the names shuffled? (y/n)? n

Current kill ring:

 Athos is stalking Porthos

 Porthos is stalking Aramis

 Aramis is stalking Athos

Current graveyard:

next victim? Aramis

Current kill ring:

 Athos is stalking Porthos

 Porthos is stalking Athos

Current graveyard:

 Aramis was killed by Porthos

next victim? Athos

Game was won by Porthos

Final graveyard is as follows:

 Athos was killed by Porthos

 Aramis was killed by Porthos

