
CSE 143 1

401/7/99

CSE 143

Modules:

Specification, Implementation,

and C/C++ Source Files
[Chapter 1]

411/7/99

Modules
•Large software systems need to be broken
into modules if there is any hope of
managing their complexity.

•Module examples:
•Table of bank accounts (including procedures to
examine and modify)

•Spelling checker part of word processor
•Graphical User Interface (GUI)

421/7/99

General Design Goals
•Subdivide large software into smaller units
•Group related operations and data together
•Isolate implementation details in one place
•Restrict interaction between module and
clients to small, well-defined interfaces

We will revisit design issues later; for now we
will focus on how to build modules in C++

431/7/99

Specification vs. Implementation
Two parts of each module
•Specification (what)

•Also known as “interface”
•Describes the services that the module
provides to clients (users)

•Publicly visible

•Implementation (how)
•Parts of the module that actually do work
•Private, hidden behind module interface

441/7/99

Modules in C++

•Modules represented by a pair of files
•specification (.h) file
•implementation (.cpp, .cc, .c++, .C, etc)
file

•Client’s only interaction with module is
through the interface defined in the .h
file

451/7/99

Imports and Exports
•Specification (.h) file declares which items
are exported
•constants, function prototypes, and data types

•Client program must import features of a
module to use them
•Use the #include directive

CSE 143 2

461/7/99

Definition vs Declaration
•In C++ (and C) there is a careful distinction
between defining and declaring an item.

•Definition: The C++ construct that actually
creates the item. (ex. full function w/body)

•Declaration: A specification that gives the
information needed to use an item (ex.
function prototype)

471/7/99

Definition vs Declaration (2)
•Rule: Every item must have exactly one
unique definition among the files that make up
the program.

•An item may be declared as often as needed.

•Corollaries:
•Specification (.h) files should contain declarations

•Definitions belong in a single .cpp file

•The implementation file should #include the
corresponding specification file for consistency
checking.

481/7/99

Program Files

// hello.h

// write hello followed
// by the value of i
void hello(int i);

// hello.cpp

include “hello.h”
include <iostream.h>

// write hello ...
void hello (int i)
{
 cout << “Hello ”;
 cout << i << endl;

}

// main.cpp
include “hello.h”

int main(void)
{
 hello(1);
 hello(2);

 return 1;
}

Specification Implementation Client

491/7/99

Building the Program

Three stages to go from source code to
executable:

•Preprocess
•read #include files, expand #define

•Compile
•Convert C++ code to object code (machine
language) the computer can execute directly

•Link
•Connects your object code with system libraries to
make an executable program

501/7/99

Building the Program (2)

Compile compiler

main.cpp

geometry.hCompile compiler

iostream.h

Link
linker main.exe

geometry.obj

main.obj

geometry.cpp

geometry.h

math.h

geometry.obj

main.obj

libraries

511/7/99

Separate Compilation
•Each module’s .cpp source code is converted
into object code separately

•Linker collects object code together to build
executable

•Many environments hide this process from you
•On MSVC, just press the “build all” button (or even
just “run” …)

•Must be done “manually” under UNIX (but
mechanisms exist to make it easier: e.g., make)

CSE 143 3

521/7/99

Compile-time error if identifiers (function names,
constants, etc.) are defined multiple times:

Multiple Inclusion Problem

...
const int MINSIZE = 20;
void writeLetters
(ofstream& otfile);
...

#include "lmatrix.h"

...

#include "lmatrix.h"
#include "word.h"
...

word.h

lmatrix.h

main.cpp

531/7/99

Multiple Inclusion Hack
•To avoid this problem, use preprocessor
directives:
// lmatrix.h

#ifndef _LMATRIX_H_

#define _LMATRIX_H_
...
const int MINSIZE = 20;
void writeLetters (ofstream& otfile);
...
#endif

•Read the above as:
If _LMATRIX_H_ undefined, compile the code through
#endif

Preprocessor directive

541/7/99

Function Scope
•Normally, a function defined in a .cpp
implementaiton file is visible to (can be called
from) all other parts of the program.
•Appropriate for functions that are part of the
module’s interface.

•Not good for functions only used in the module as
part of the implementation (i.e., a function whose
existence should be a private mater, not visible to
clients).

551/7/99

static Functions

•A function definition may be preceded by the
keyword static. Such functions are said to
have file scope and are not visible outside the
.cpp file containing the definition. Use for
functions that are not part of the module’s
interface. Example:

// yield the value 17

static int xvi() {

 return 17;

}

