
Graphical API Documentation
The following document describes the graphical API framework, covering the general programming model,
and then a description of the objects that the framework provides, and how they interrelate.

Programming Model
Upon program startup, a world object is instantiated to handle communications between the main program
and the runtime system (in this case, the runtime system consists of both the application framework and the
operating system). The world responds to events that the runtime system sends, and has control over the
menu bar at the top of the window. The world also maintains three lists of objects, differentiated by type.

The first list contains objects having methods that are invoked by the world periodically at the rate of about
every tenth of a second. These are known as updateable objects. When the world detects that about a tenth
of a second has passed, the world calls the update method in each of the updateable objects in the list. Each
object’s update method can be different; one object might attempt to do animation, while another object
may be checking to see if other objects happen to be near it at the time.

The second list contains objects having methods that are called whenever the screen needs to be redrawn or
updated. These drawable objects have graphical representations associated with them. For example, a
butterfly drawable object would have a graphical representation of a real butterfly associated with it. The
graphical representations are composed of drawing primitives, such as circles, lines, and rectangles. These
drawing primitives are stored in a drawing list within the drawable object. When the world realizes (either
because the programmer asked the world to update the window, or because of a request by the runtime
system) that it needs to redraw the screen, it calls the draw method in each of the drawable objects in the
list. Each objects draw method will run through the object’s drawing list and draw each of the primitives in
the list.

The third list contains objects having methods that are called whenever the user attempts to interact with
the program. These interactable objects have methods that are invoked depending on the way in which the
user is interacting with the program, such as by clicking with the left mouse button or by moving the mouse
around. When the world is notified by the runtime system that the user attempted to do something, the
appropriate method in all the objects in the list is called. For example, if the user pressed down the left
mouse button, then the method that handles left button down situations (OnLButtonDown) is called for all
of the objects in the list. It is up to the individual method to decide whether or not it should do something
about the event.

It should be noted that a single object could simultaneously be in more than one of these lists. It is quite
possible for a butterfly object, for example, to be both drawable (displays a butterfly on the screen) and
interactable (chases the user’s mouse cursor).

The world is also in charge of the menu bar at the top of the window, including the save/load options. The
world can load in objects from a text file and place them into the appropriate lists.

Programmers can augment this system by creating their own drawable, interactable, and updateable objects.
This is accomplished by creating derived classes from the above classes, and overriding the appropriate
methods with the programmers’ own methods. Furthermore, when a new object is created, a world method,
addObject, must be called to notify the world that a new object needs to be put into the above lists.

An Example Extension: The DraggableClass
This section describes how to go about creating an interesting drawable, interactable object. This tutorial
should be read at the same time as you are perusing draggableclass.cpp and draggableclass.h, which are
included in the framework distribution.

Figuring out the desired behaviours
The programmer should determine what she wishes the new class to do. Be very explicit about it, write it
down, and then match the desired behaviours to the available methods/objects in the Object hierarchy to
determine a point from which derivation is useful.

In this case, we wish to make a drawable object that can be dragged around by the user using standard
click-and-then-drag style movement. The user must first press down the left mouse button, then move
around the mouse while the left mouse button is down. When the user is satisfied by the object’s new
position, she needs to release (or depress) the left button. This has a number of implications:
• The draggable object must have both the qualities inherent in the drawable object and an interactable

object. The draggable object must be a drawable object in order to be able to display itself on the
screen. The draggable object must be an interactable object because it is responsive to user input. It
turns out that the interactable object inherits the qualities of the drawable object, so we only need to
derive the draggable object class from the interactable object class (see object.h for details).

• We wish to define our own behaviours when the user presses down the left mouse button, when
moving the mouse around while the left mouse button is down, and when the user releases the left
mouse button. Fortunately, the interactable object defines methods that handle those three situations.
Our draggable object class must override these methods to do what we want.

• We wish our draggable object to be instantiable. It turns out that we will also need to add three
methods to make this so: an update method, a print method, and a read method to our draggable object
class. All three of these are pure virtual, so some kind of implementation is necessary to make our
draggable object instantiable.

Given this information, then, it becomes much easier to see the structure of the DraggableObject as defined
in draggableobject.h. For a fuller description of the methods, see the appendix in this document, as well as
object.h in the distribution. In addition to the methods outlined above, a couple of extra member variables
are necessary to perform the dragging motion, and a constructor is also defined to initialize them. We’ll talk
more about the extern const char* draggableObjectName in a moment.

Notice that each of the methods that we will override (except for the print and read methods) take in a
pointer to a world. This is extremely important, as the world contains information about where the mouse
actually is, and we will need to tell the world if the object has changed itself to the point where the window
needs to be redrawn to take into account these changes.

Implementing the desired behaviours
Now, let’s take a closer look at the implementation of the DraggableClass, in draggableclass.cpp, focusing
on the OnLButton method. This method is invoked when the user presses down the left mouse button.
However, as mentioned previously, the world calls the OnLButton method of all of the interactable objects
when it receives notification from the runtime system that the user has pressed down the left mouse button.
It does not matter that a particular interactable object is nowhere near where the user pressed the left mouse
button; its OnLButton method will be called. This means that when a particular draggable object’s
OnLButton method gets called, we are not sure if the user is really trying to interact with that particular
object.

So, that means that the first thing that needs to be done is to determine if the location of the mouse
corresponds with the location of the object whose OnLButton method was called. The draggable class
OnLButton method first asks the world for the current mouse coordinates, and determines if the user is
clicking on the current object (we use the intersects method, detailed in the appendix and in object.h, to see
if this is true). If the user isn’t, then we exit the method with return value false, which tells the world that
the event was not processed by this object. If the user is clicking on the object, then we perform some
actions, and return true, which tells the world that this object has successfully processed the event.

All of the interactable object methods that we overrode are implemented in a similar way. First, these
methods determine if they can handle the event. If they can, then do something. The return values of the
other two methods are determined in the same way as the OnLButton method.

Of note is the usage of the world’s update method in these methods. The update method is called when the
object has changed to the point where the changes affect the graphical representation of objects on the
screen. Note that the only time we make such a change is when we change the origin in the OnMouseMove
method. It is generally a good idea, for performance reasons, to call the update method only when necesary.

Now, note the DraggableClass update method (this is not to be confused with the world’s update method
talked about earlier). It merely returns false (implying that nothing was done to modify the graphical
output), since our desired behaviour enumerated earlier doesn’t really require the use of the update method.
However, it’s implemented since the method is defined in a base class to be pure virtual, and we wish to
instantiate objects of type DraggableClass.

Loading/Saving of DraggableClass objects
This is the final step necessary to create a DraggableClass that will work properly within this framework.
All concrete instantiable classes that are updateable, drawable, or interactable must be able to read/write
itself terms of the object definition format.

The object definition format
An object definition looks like:

class-identifier {
attributes

}

The class-identifier, or header, is a unique name that can be recognized as belonging to a specific type of
saved object. The attributes contain information that’s specific to the object, and are enclosed in a pair of
braces. Whitespace (carriage returns, tabs, etc) doesn’t matter, so long as they exist between the class-
identifier and the open brace, the brace and the beginning of the attributes, and the end of the attributes and
the end brace. For example:

class-identifier { attributes }
is equivalent to the first object definition above, but is a little bit more compact.

The DraggableClass print method
The DraggableClass print method is used to save the world to a text file, and must be able to output
information regarding the draggable class that we wish to save. We print out the class identifier string
(which is defined at the top of the file), and then the opening brace. we decide that the only attributes that
are interesting are the origin of the draggable object and the draw list (what the object currently looks like),
and we can leverage off of the DrawableObject’s print method to take care of these two attributes (see
object.cpp for all the details). Finally, we print out the closing brace to complete the requirements for the
object definition format defined above.

The DraggableClass read method
 We must define a read method capable of reading in both an object definition as defined above and a
variant of the object definition without the class identifier but with the braces and the attributes. So, not
only must the read method handle input in the object definition format above, but must be able to handle
input of the form

{
attributes

}
where the classi-identifier string is missing.

Fortunately, this can be easily accomplished, by first reading in a single character. If the character is a ‘{‘,
then we know that input will be in the truncated form, and for one reason or another the class-identifier
string is missing. Otherwise, we should go ahead and read in the class-identifier, and then read in the ‘{‘
that proceeds it. Then, it’s a simple matter or reading in the attributes (just as we leveraged off of the

DrawableObject’s print method, we can leverage off of DrawableObject’s read method to get the origin and
the geometry), and finishing by reading in the end brace.

Modify the loadWorld function
The final task that we need to do is to modify the loadWorld function, located in worldio.cpp. The
loadWorld function is called by the world when the user wishes to load in a world, which is accomplished
by choosing the “load” menu option from the menu bar. This function reads in objects from the istream
that’s passed in via the following process:

Read in and set the world size
While there are more things to read in:

Read in the class-identifier
If the class identifier matches a known instantiable class then

Dynamicaly allocate a new object of that type
Read in and store the attributes into the new object
Register the new object with the world

 For each instantiable class that you make, you must add in a new check to see if the class identifier that
was read in matches the class identifier you have given your own class. If so, then you must dynamically
allocate a new object of that type, read in and store the attributes into the new object, and finally register
the new object with the world. That is exactly what the code in the while loop does. Also, note that this is
the only place where we actually utilize a DraggableObject, so we needed to #include “draggableobject.h”
at the top of worldio.cpp.

In a nutshell…
Congratulations! You have now read through the steps necessary to create a new instantiable class that
exhibits interesting behaviours! As a recap, in order to create a new class with interesting behaviour, we
have:
1. Figured out in explicit detail what we want our new object to do. This helps you decide which classes

you need to derive from, and what methods should be overriden.
2. Implemented the object in its own specification/implementation file.
3. Wrote print/read methods that conform to the object definition format. In addition, the read method

must be able to handle the special case where the class-identifier string is not there.
4. Modified the loadWorld function in worldio.cpp so that when a world file is read in draggable objects

are instantiated.

Now you should follow these general steps in creating your own objects within this framework.

Commonly used objects and their methods
For all of the following descriptions, anything that is italicized should be considered to be a variable whose
type is of the class that’s currently being described.

Drawing Primitives
The following are the drawing primitives, along with some often-used method names and descriptions.

A word about the coordinate systems
The (x,y) coordinates used to specify points in the package has its origins in the upper left corner of the
screen, with positive x going to the right, and positive y going down to the bottom of the screen.

+Y

+X

(0,0)

Class DrawColor
This class is designed to be an abstraction for colors. A color is defined as a mixing of three colors: red,
green, and blue. Each of these components are integers ranging from 0 to 255. The higher the value, the
more intense that color stands out. For instance, red=255, green=0, blue=255 produces a magenta color. A
color can also be defined in terms of a specific name, such as DrawColor::Red or DrawColor::Green. These
two values are of type DrawColor::Name (see drawprimitives.h for a listing of all possible values of this
type). The class has several member methods that allow for retrieving/storing colors.
Method Name Usage example Purpose
getByName DrawColor::Name

c=color.getByName();
Stores color’s value in c.

set(DrawColor::Name) color.set(c); Sets color to c.
getByRGBComponents(int, int, int) color.getByRGB(r, g, b); Stores the red, green, blue

components of color to r, g,
and b respectively

set(int, int, int) color.set(r, g, b); Sets color’s red, green and
blue components to r, g,
and b respectively

Class DrawPrimitive
All drawing primitives (except DrawColor) are derived from the DrawPrimitive class. All derived classes
have the following methods associated with them:
Method Name Usage example Purpose
getColor DrawColor c = prim.getColor() Store prim’s color into c.
setColor(DrawColor) prim.setColor(c) Set prim’s color to c.
pointInPrimitive(DrawPoint) bool isHit = prim.pointInPrimitive(pt) If pt is within the bounds of prim,

return true, else return false.
print(ostream&) prim.print(out); Print out prim
read(istream&) prim.read(in); Read in prim

Class DrawPoint
This class is designed to be an abstraction for points. A point is defined by its (x,y) coordinates and also has
an optional radius. The class has several members that allow for point manipulation:
Method Name Usage example Purpose
getX int x = pt.getX(); Store pt’s x coordinate in x.
getY int y = pt.getY(); Store pt’s y coordinate in y.
getRadius int rad = pt.getRadius(); Store pt’s radius in rad.
setX(int) pt.setX(newX); Set pt’s x coordinate to newX.
setY(int) pt.setY(newY); Set pt’s y coordinate to newY
setRadius(int) pt.setRadius(newRadius); Set pt’s radius to newRadius

Class DrawLine
This class is designed to be an abstraction for lines. A line consists of two points: a beginning point, and an
ending point, both of which are DrawPoints. A line may also have a width associated with it.
Method Name Usage example Purpose
getBegin DrawPoint pt = l.getBegin(); Store l‘s begin point in pt
getEnd DrawPoint pt = l.getEnd(); Store l‘s end point in pt
getWidth int w = l.getWidth(); Store l‘s width in w
setBegin(DrawPoint) l.setBegin(pt); Set l‘s begin point to pt
setEnd(DrawPoint) l.setEnd(pt); Set l‘s end point to pt
setWidth(int) l.setWidth(newWidth); Set l‘s width to newWidth

Class DrawRectangle
This class is designed to be an abstraction for rectangles. A rectangle consists of two points, representing
opposite corners of the rectangle. A rectangle also may either be filled inside or not.

Method Name Usage example Purpose
getCorners(DrawPoint&,
DrawPoint&)

rect.getCorners(pt1, pt2); Store rect’s corners in pt1 and
pt2.

setCorners(DrawPoint,
DrawPoint)

rect.setCorners(pt1, pt2); Set rect’s corners to pt1 and pt2.

getFill bool isFilled = rect.getFill(); If rect is filled then return true,
else return false.

setFill(bool) rect.setFill(f); Set rect to fill if f is true, else set
rect to not fill.

Class DrawEllipse
This class is designed to be an abstraction for ellipses. An ellipse can be defined in terms of the rectangle
that’s the bounding box for the ellipse, like in the picture below. The ellipse can also be filled or not filled.

Method Name Usage example Purpose
getBounds(DrawRectangle&) el.getBounds(rect); Store bounding area of el in rect.
getFill bool isFilled=el.getFill(); If el is filled then return true, else

return false.
setBounds(DrawRectangle) el.setBounds(rect); Set el’s bounding area to rect.
setFill(bool) el.setFill(f); Set el to fill if f is true, else set el

to not fill.

World Object
The world object receives and processes incoming events from the runtime system. The world keeps a list
of updateable objects, and calls each updateable object’s update method approximately once every tenth of
a second. The world also keeps a list of drawable objects, and whenever the world needs to redraw the
screen, each drawable object’s draw method is called. The world also keeps a list of interactable objects. If
user input is detected by the world, then each interactable object’s method corresponding with that user
input gets called (see the interactable object class for a list of supported user inputs).

The world also is in charge of loading/saving worlds from disk. In order to do this, two global functions,
loadWorld and saveWorld, are called. The draggable object example talks in depth about the loadWorld
function. The saveWorld function runs through all of the objects that registered with the world, and outputs
their contents to the ostream that’s passed in as a parameter.

The following is a list of methods that might be useful to programmers building instantiatable classes:
Method Name Usage example Purpose
getMousePoint DrawPoint pt =

w.getMousePoint();
Store w’s mouse position into pt.

getSize(int, int) w.getSize(sx,sy); Store w’s width and height into sx
and sy, respectively

addObject(Object*) w.addObject(objPtr); Register objPtr with w, so that w
can invoke the object’s methods
when needed.

removeObject(Object*) w.removeObject(objPtr); Unregisters the objPtr from w, so
that w can no longer invoke the
object’s methods.

getAllObjects ObjectList* li =
w.getAllObjects();

Store a pointer to w’s object list
in li.

update w.update(); Inform w that an object has
changed and needs to be redrawn

Note that the getAllObjects method, along with checking for specific types with isA (see object.h) is useful
in trying to find and interact with objects of a specific type. This can be accomplished by iterating across
the list looking for objects in which the object is a subclass of the specific type.

Class UpdateableObject
Updateable objects have one method of interest, called update, which takes in a pointer to a world object
as a parameter. If the updateable object is registered with a world via the addObject(Object*) method,
then the world will call the updateable object’s update method approximately once every tenth of a second.

Class DrawableObject
A drawable object has associated with it an origin and a list of drawing primitives whose coordinates are
relative to the origin. No matter where the origin is in the world, the drawing primitives will treat the origin
point as (0,0) and its shapes will be drawn relative to that point. Suppose, for example, a drawable object
has origin at (100,150) and the drawing list contains a point that will be drawn at (3,5). The point will
actually be drawn (relative to the world) at (103,155).

A drawable object has one method that is called by the world the object registered with, the draw method.
This method will draw all of the items in the draw list, taking into consideration the origin. This method
generally does not need to be overriden by derived classes, though it is possible to do.

Drawable objects also have methods to set/get the origin, and to determine if a point is within the
boundaries of the object.
Method Name Usage example Purpose
getOrigin(DrawPoint&) obj.getOrigin(pt); Store obj’s origin in pt
setOrigin(DrawPoint) obj.setOrigin(pt); Set obj’s origin to pt
intersects(DrawPoint) bool collision=obj.intersects(pt); Returns true if some primitive in

obj’s draw list intersects with pt.

Class InteractableObject
InteractableObjects are objects that can respond to user input events, such as the clicking of the mouse
button, and the movement of the mouse. If the programmer wishes to create an interactable object that
handles a specific user event, like pressing the right button, then she will need to derive a new class from

InteractableObject that overrides the appropriate method (in his case, the OnRButtonDown method). An
interactable object that has registered with a world will have its method called if the world detects a user
action. However, just because the world calls this method doesn’t mean it’s the object that the user is trying
to manipulate. It is up to the individual method to determine if the user input is intended for that particular
method (usually by determining if the mouse is clicking on the graphical representation of the object).

Each of these methods return a boolean value, which is true if the object decided to do something based on
the user input (this is known as capturing the event), or false if the object decided not to do anything about
it.
Method Name When called
OnLButtonDown User pressing down left button
OnLButtonUp User releasing left button
OnRButtonDown User pressing down right button
OnRButtonUp User releasing right button
OnMouseMove User moving the mouse

Using the isA function
In order to facilitate interaction with other objects, we provide a function called isA, defined in object.h,
which takes in a pointer to an object, and a class name. If the object’s type (Not the type of the pointer) is a
subclass of the class name, then the function returns true. So, for example, let’s suppose that we had the
following hierarchy chart:

And the following definitions:
Seaweed sw;
EdibleSeaweed ed;
NonEdibleSeaweed non;
Ogo ogo;

Then the following chart lists some results that the isA function would give:
Call Result
isA(&sw, Seaweed) true
isA(&ogo, Seaweed) true
isA(&ed, Ogo) false
isA(&ogo, NonEdibleSeaweed) false
isA(&non, EdibleSeaweed) false
isA(&sw, Ogo) false

The List class
This section describes one useful data structure that is used throughout the framework, the List class. Here
are the methods, and its usage. The following chart should be used to determine what the type of item or
pos should be, from the method name/usage chart:

Seaweed

EdibleSeaweed NonEdibleSeaweed

Ogo

Type of List Type of item Type of pos
ObjectList Object* ObjectList::Position
UpdateableObjectList UpdateableObject* UpdateableObjectList::Position
DrawableObjectList DrawableObject* DrawableObjectList::Position
InteractableObjectList InteractableObject* InteractableObjectList::Position
DrawPrimitiveList DrawPrimitive* DrawPrimitiveList::Position

Method Name Usage/Purpose
isEmpty() Checks to see if the list is empty
isFull() Checks to see if the list is full
sizeOf() Checks to see how many elements are in the list
data(pos) Returns data at pos.
reset(pos) Resets pos back to the head of the list
front(pos) Places pos to the head of the list
back (pos) Places pos at the end of the list
advance(pos) Places pos at the next node in the list
previous(pos) Places pos at the previous node in the list
endOfList(pos) Checks to see if pos is off either end of the list
find(item) Returns a position to the item in the list, or at

endOfList if not found.
addToFront(item) Inserts an item to the front of the list
addToEnd(item) Inserts an item at the end of the list
insertBefore(pos, item) Inserts an item just before the node pointed to

by pos. pos will be pointing at the new node.
insertAfter (pos, item) Inserts an item just after the node pointed to by

pos. pos will be pointing at the new node.
deleteItem(pos) Removes the node that pos is pointing to. pos

will be pointing to the next item in the list.
clearAll() Clears the entire list.
print(out) Prints out the list.

