Searching and Sorting
[Sections 12.4, 12.7-12.8]

8/11/98 CSE 143 Summer 1998 302

Searching and Sorting

[J Two very common problems in Computer
Science
[] Searching

Given a collection and an element, find the element
in the collection

Useful for both Table and Set ADTs
Elements must be comparable using ==
[J Sorting

Given a collection, rearrange elements into some
order

8119 Elements must becomparablesusing <= (or <) 303

Searching Arrays

[J We can search any sequential collection using
the supplied navigation methods
[But we'll focus on searching arrays
Direct access makes searching potentially faster
Indices allow us to return location of element in array

int search(int data[], int size, int item) {
/1 Return the index of itemin the array
/I or -1if the itemisn't in the array

}

[] Size of problem is length of the array

8/11/98 CSE 143 Summer 1998 304

Linear Search

[J Look at every array element in order

/1 Linear search
int search(int data[], int size, int item) {
for(int idx = 0; idx < size idx++) {

if(datal idx] ==item) {
return idx;
}
}
return -1;

[J What's the complexity of linear searching?

8/11/98 CSE 143 Summer 1998 305

Searching a Sorted Array

[JIf the array is already in sorted order, we can do
a lot better
[J Idea: for any chunk of the array, the item we're
searching for is either <, == or > the element at
the middle of the chunk
If ==, we're done

If <, we don’t have to look at anything right of the
middle

If >, we don’t have to look at anything left of the
middle

8/11/98 CSE 143 Summer 1998 306

Binary Search

[J Jump to the middle and discard the half we don't
care about

/1 Binary search
int search(int data[], int size, int item) {

return findl nRange(data, item 0, size - 1);
}

int findinRange(int data[], int item int lo, int hi) {
if(1o >hi) return -1;
int nids=(lothi) / 2
if(item== data[md]) {
return mid;
}else if(item< data[md])
return findinRange(data, item lo, md - 1);
} else {
return findinRange(data, item mid + 1, hi);
}

}

8/11/98 CSE 143 Summer 1998 307

Performance Analysis

I "
[J How much work is done at each recursive call?
[J How many recursive calls are there?

[JOn a sorted array, would you rather use linear
search or binary search?

8/11/98 CSE 143 Summer 1998 308

Other Searching Methods

[J Interpolation Search

If the array contains numeric data, can "guess" how
far into array to jump instead of middle

Works well on uniformly distributed data
Worst case is O(n), average case is better than
O(log,n)

[Hashing (maybe later)
Relies on constructing a "hash function”
Average case is O(1)!!

8/11/98 CSE 143 Summer 1998 309

Sorting Arrays

[J Given an array, move elements around until the
array is sorted according to some <= relation
Ifidx <= jdx,thendata] idx] <= data[jdx]
[] Size of problem is length of array
[J Two facets to amount of work done
Number of element comparisons
Number of data movements

8/11/98 CSE 143 Summer 1998 310

Selection Sort

void selectionSort(int* data, int size)

if(size>1) {
int mo=0;
for(int idx = 1; idx <size; ++dx) {
if(data[idx] < datal m]) {
mo=id
}

}
swap(data[0], data[m]);
selectionSort(data + 1, size - 1);

}

}

[J How many recursive calls are there?
[1 How much work done at each recursive call?

8/11/98 CSE 143 Summer 1998 311

Insertion Sort

IntList insertionSort(IntList list)

[J Idea: build a new list
that's always sorted and st atan0:

return that e ST et bat)
. . list.deletelten);
[] Better for linked lists Tnsert(result 1iem):

[] Can be faster than
selection sort

[J Can use as basis for new
ADT: SortedList

}
return result;
}
void insert(IntList&list, int item)
for(list.start(): !list.atEnd();
Iist.advance()) {

if(item< list.getData()) {
br eak;
¥

}
list.insertBefore(item);

8/11/98 CSE 143 Summer 1998 312

Fast Sorting Algorithms

[1 Even O(n?) can get expensive when nis really
big

[J There are sorting algorithms that run closer to
O(nlogn)

] These algorithms tend to be elegantly recursive:
break the problem down, sort subproblems,
reassemble (divide and conquer)

Quicksort
Mergesort

8/11/98 CSE 143 Summer 1998 313

Mergesort

[Ildea:

Break the list down into two roughly equal-sized
sublists

Recursively sort each sublist
"Merge" the sublists together to get solution

8/11/98

CSE 143 Summer 1998

Writing Mergesort

void split(IntList& from IntList&tl, IntList&t2) {
fromstart();

while(true
i(fromisEmpty()) break;

tlinsertAfter(fromgetData());
fromdel etelten);

if(fromisEmpty()) break;
t2.insertAfter(fromgetData());
fromdel etel tent);

}

}

IntList nergesort(Intlist&list) {
it(list.getSize() <=1) {

Break the list down into return list;

two roughly equal-sized |} el

sublists

se {
[~ [MiList subl, subz;

ursively e split(list, subl, sub2);

Re-l(inmw-\) sort each | b = mergesort(subl);
sublist sub2 = nergesort (sub2);
“Merge" the sublists __|——>Teturn nerge(subl, sub2);
together to get solution }

8/11/98

CSE 143 Summer 1998 316

How To Merge

X i IntList merge(IntList&I1, IntList&12) {
[] Start with two sorted lists | |ntList resuit:

Il start();
of integers, which act like 'wi;f‘;'{ii‘e) ‘
two queues Maunrony) o BeEm0)L
[J Until both lists are empty, | ' fesiitinsertator 12 gotoata0):
remove the front element | ase i1 121 sEmy0) {
which is smaller and add el stereny oL a0)
to result list o

if(11.getData() < |2 getData()) {
result.insertAfter(|1 getData());
11, del etelten();

} else {
result.insertAfter(|2. getData());
12 del etelten();

[Result will be sorted!

}
}

}

8/11/98

CSE 143 Summer 1998

Example of Mergesort

171197413159 [37] 5 |

|

Analysis of Mergesort

"
[J Initial questions:
What's the complexity of mer ge() ?
What's the complexity of split()?
[] Complete analysis is rather difficult

Each "level" of recursion involves 2k calls to
mergesort, each of size n/2k

So we're doing a total of O(n) work at each level

There are O(log n) levels, so total complexity is
O(nlog n)

[J But mergesort is not used very often!
8/11/98 CSE 143 Summer 1998 318

g
8/11/98 CSE 143 Summer 1998 317
Quicksort

[J The most widely-accepted fast sorting algorithm
"Easy" to implement
Good performance
Operates "in place": no need to create temporary
data structures

[JIdea: given an array of integers...
Choose an element of the array to act as the pivot

Move everything <=pivot to the left, everything >pivot
to the right (partition the array)

Recursively sort left and right halves

8/11/98 CSE 143 Summer 1998

Writing Quicksort

voi d quicksort(int data[], int size)

qui cksortRange(data, 0, size - 1);

voi d qui cksortRange(int data[], int lo, int hi)

if(1o >=hi) {
return;
}

int midindex = partition(data, lo, hi);
qui cksortRange(data, lo, midindex - 1);
qui cksortRange(data, mdindex + 1, hi);
}

[J Partitioning is the hard part...

8/11/98 CSE 143 Summer 1998 320

How to Partition

L] (Arbitrarily) choose the first element of the range
as the pivot

[Swap array elements around until everything <=
pivot is left of pivot, everything >pivot is right of
pivot

[J Return the final resting place of the pivot

elem 37 T11 [o7 [41 | 31 |59 |43 5 |

[11]31] 5 [37] 97 [41]59][43]

8/11/98 CSE 143 Summer 1998 321

Implementing Partitioning

void partition(int data[], int lo, int hi)

int nidval = datal lo];
intj=lo
int k= hi;

while(j <k) {
while((j <= hi) && (data[j] <= midval)) +4;
while((k >= l0) & (data[k] > midval)) --k;
if(j <k){
swap(data[j], data[k]);
}

}

swap(data[lo], data[k]);
return k;

8/11/98 CSE 143 Summer 1998 322

Complexity of Partition

[Don't be fooled by the nested while loops
j starts atlo and only increases
k starts at hi and only decreases
j is incremented at least once for each iteration of
outer loop
Stops when j and k cross
[J At most hi -1 o+1 iterations of inner loops, so
O(n) time

8/11/98 CSE 143 Summer 1998 323

Complexity of Quicksort

[J Similar to mergesort
Linear work for each recursive call

At every level of recursion, roughly 2% calls on arrays
of size n/2k

So O(n) work at each level of recursion
About O(log n) levels, so total complexity is O(n log n)
[1But there’s a big assumption here!

This analysis depends on how evenly partition
divides arrays

8/11/98 CSE 143 Summer 1998 324

Best Case For Quicksort

] The best case is when partition breaks every
array exactly in half

[J Then our assumptions are valid: every level
does O(n), O(log n) levels, so O(n log n) total

8/11/98 CSE 143 Summer 1998 325

Worst Case For Quicksort

[J Worst case is when partition breaks array into
subarrays of size 1 and n-1

[1In this case, there are n levels of recursion, and
we still do O(n) work at each level, so O(n?) total!

[J This can happen when the chosen pivot is the
smallest or largest element of the array

[1 We want to avoid that!

8/11/98 CSE 143 Summer 1998 326

Average Case For Quicksort

[J It turns out that the average case is still pretty
good

[J For "most" arrays, quicksort will run in O(n log n)
time

[] Average case analysis based on probability that
pivot is bad in a random array

8/11/98 CSE 143 Summer 1998 327

Building A Better Quicksort

[1 Don't have to choose dat a[| o] as pivot every
time
Can do some small (linear) amount of work to choose
a better pivot
[J Choosing a pivot at random yields O(n log n)!!
[J Other techniques involve computing the median
of some elements in the array and work fairly
well in practice

[J Quicksort is usually the best choice for sorting

8/11/98 CSE 143 Summer 1998 328

Summary

[J Searching: find an element in a collection
Linear search: O(n)
Binary search: O(log n)
[J Sorting: rearrange a collection according to
some ordering relation
Selection sort, insertion sort: O(n?)
Mergesort: O(n log n) but inefficient

Quicksort: O(n log n) average, O(n?) worst, but a good
choice in practice

8/11/98 CSE 143 Summer 1998 329

