-

C S'E 14"

STUM B

[+

Pointers and Dynamic Memory
(Chapter 7)

7/21/98 CSE 143 Summer 1998 189

Computer Memory

[] Bit (binary digit): a single boolean value
] Byte: eight bits
[JMemory is a big array of bytes:

[char memory[67108864 1 ||

[Each byte has two properties
A value
A location (address)
[] A programming language is a high-level
abstraction for manipulating (part of) this array

7/21/98 CSE 143 Summer 1998 190

Storing Data in Memory

[J Program data can be placed in one of three
kinds of memory
Static memory: space set aside by the compiler
ahead of time (don't confuse with C/C++ stati ¢
keyword)
Automatic memory: space used by local variables of
functions during execution

Dynamic memory: extra space requested explicitly at
runtime

7/21/98 CSE 143 Summer 1998 191

Static Memory

. - # nclude <iostream h>
nclude <iostream h>

char menory[67108864];

int x #def i ne x memory[003]
inty; #define y memory[407]
int main(void) int min(void)
(i — (

x =8 x =8

y = 17; y = 17;

cout << x << cout << x << " "

<<y << endl; <<y << endl;

Disadvantages of Static Memory

[J So far, all programs have a fixed upper bound
on size
[J This is bad!
User input usually not known in advance

Different uses of the same program may require
different amounts of memory

Operating systems are smart enough to give you
more memory if you need it

[J Need a way to request more memory if needed

7/21/98 CSE 143 Summer 1998 193

return 0; return 0;

})

X y

| | | | | |

b EallEEEEEE
0 1 2 3 4 5 6 7 8 9 10 11 12
7/21/98 CSE 143 Summer 1998 192
Pointers

[JIf we're going to request more memory, we need
a way to refer to it
Location of new memory not known in advance

[JA pointer is an
abstraction of an
address in memory

7/21/98 CSE 143 Summer 1998 194

Pointers in C++

[J For any type T, T* is the type "pointer-to-T"

int *x; /1 A pointer to in integer
Student *pCraig; /1 A pointer to a Student
Screen *dynamicScreen; // A pointer to a Screen

] The placement of the * is irrelevant
But the book gets it wrong

int* x, y; // Not what you expect!
int *x, y: // Abit nore clear

int *x; /1 This i's probably
int y; /1 the best
7/21/98 CSE 143 Summer 1998 195

The Secret Lives of Pointers

) Recall
Memory is just a big array of bytes P
A pointer is an abstraction of a int y;

memory location
[So: a pointer is an index into the y =17
memory array makepy point toy;
. L . . return 0;
] A pointer is itself a variable, so it
lives in memory too!
Ry

int main(void)

Y
iImNIlEESlEEEEEE

7/21/98 CSE 143 Summer 1998 196

Dereferencing Pointers

[J Presumably, a pointer-to-

int points toani nt (e minCverd)
Need a way to get back the i Ot
actual i nt '

7 + is the dereference rekepy point oy;
operator (not :gg; et
multiplication!) ' on

) . cout <<y << " " << (*
If p is of type pointer-to-T, << indl ; >
o
then *pis gf type T return o
(*p) acts just like a }
declared variable of type T
(*p) is like menor y[p]
7/21/98 CSE 143 Summer 1998 197

Pointers to st ruct s and
cl asses

[JIf p points to a struct or class, . syntax can be
used on (*p) to get at member data and
functions

[J But - > syntax is a convenient shorthand

e ic chart far (& ae e\ i
ptr men #include "student.h”

int main(void)
Student *ps;

cout << ps->getGPA() << endl;
return 0;

7/21/98 CSE 143 Summer 1998 198

The Address of a Variable

[J All variables live in some
segment of memory
So it should be possible to get
pointers to them
[] Use the & operator to getthe | o+ 5
address of an object
[& returns an index into the
memory array that can be y e
used to point to x

[Can you take the address of a pointer?

int main(void)

inty =17;
int*py = &y;

cout <<y << " << (*py)
<<endl;

7/21/98 CSE 143 Summer 1998 199

Pointers and Arrays

[Arrays are already it main(void)
i {
pointers ity =17
An array variable contains intw(]={1,4,58%
the address of the start of int*p;
the array
. . . p=&y; /lppointstoy
Array indexing is p=w, //p points tow[0]
equivalent to "pointer p = &w[2)); // p points to w[2]
arithmetic" p=w+3; //p points tow[2]
All pointers can return 0;

transparently point to a
single object or an array of
objects

7/21/98 CSE 143 Summer 1998 200

Aside: scanf

[J Remember how you needed the mysterious & in
scanf ?

#include <stdio.h>

int x;
scanf("%d", &x);

[J C has no reference parameters, so scanf works
using pointers:

void scanf(char fmtf], int *x)
{

inty = readanint fromthe user;
™=y

7/21/98 CSE 143 Summer 1998 201

Aside: References

[] References are just "pretty" pointers

void swap(int& x, int&y) void swap(int* x, int*y)
inttmp = x; int tmp = (*x);
X=y;)= Cy)
y=tmp; (ty) = tmp;
} 00 > |}
inta=15,b=19; inta=15,b=19;
swap(a,b); swap(&a, &);

[J Of course, you should still use references when
appropriate

7/21/98 CSE 143 Summer 1998 202

Getting More Memory

[J For any type T, the expression new T returns a
pointer to a fresh instance of T

I At run time, an unused block of memory is chosen
and initialized

| The address of the block is returned
[J Of course, might need to call a constructor of T

| Can call constructors in similar way to variable
declarations

I If no arguments are supplied, default constructor is
called

7/121/98 CSE 143 Summer 1998 203

Using oper at or new

#include "fraction.h"
#include "screen.h”

int main()

int*x = new int;
int*y = new int(17);

Screen *scrl = new Screen();

Screen *scr2 = new Screen('t');
scrl->horizontalLine(3, 6, 12, *');
Fraction *frac = new Fraction(12, 19);

return 0;

7/21/98 CSE 143 Summer 1998 204

Creating New Arrays

[] operator newcan

int main(void)
also be used to .
int num;
create arrays int *data;

[J Arrays can have cout << "How many items?” << endi;
unspecified size at e newingrum]
compile timel for(intidx = 0; idx < num; ++idx) {

) cin>>data[idx];

[1 Use the new T[size) o data,

] syntax for(intidx = 0; idx < num; ++idx) {
cout << data[idx];

) Must call default

return 0;
constructor }
7/21/98 CSE 143 Summer 1998 205

Dynamic Arrays

[J Dynamically allocated arrays are a powerful tool

#ifndef __SCREEN_H__
#define __SCREEN_H__

class Screen {
public:
Screen(int width, int height);

void putChar(int col, int row, char ch);
char getChar(int col, int row);

private:
char *data;
int width;
int height;
b3

#endif

7/21/98 CSE 143 Summer 1998 206

The Heap

[J Dynamically allocated memory comes from "the
heap"

A chunk of memory set aside just for dynamically
created objects

7/21/98 CSE 143 Summer 1998 207

Cleaning Up

[J Just as dynamic memory must be explicitly
allocated, it must be explicitly deallocated

voi d blarg()
{

int *a = newint;

}
int main(void)

for(int idx =0; idx < 1000000; ++idx) {
blarg();

return 0;

}
1 Need a way to tell dynamiC memory t0 go away

7/21/98 CSE 143 Summer 1998 208

The del et e operator

[J The statement del et e p returns the memory
associated with (*p) to the heap
No longer legal to refer to (*p) !

Memory can now be reallocated and used for other
purposes

Works the same way for arrays
[J Making sure that del et es match with news is
very hard
A very common source of bugs
Some languages don't have del et e

7/121/98 CSE 143 Summer 1998 209

Using del et e

int main(void)
{

int num
int *data;

cout << "How many items?" << endl;

cin >> num

data = new int[num];

for(int idx =0; idx < num ++idx) {
cin >> datal idx];

}

sort(data, num);

for(int idx = 0; idx < num ++idx) {
cout << data[idx];

}

delete data;
return 0;

7/21/98 CSE 143 Summer 1998 210

Hazards of Dynamic Memory

[J Pointers are distinct from
what they point to

Problems occur when voi d memoryleak()
they're not kept in synch int *pi = newint;
(] Memory leak: allocated y P newinn
object, but no way to
reference it voi d dangl | ngPoi nter ()
[Dangling pointer: ™ *pi = new int;
pointer still points to o e P,
memory location, object }

no longer exists

7/21/98 CSE 143 Summer 1998 211

Summary

[J Dynamic memory is memory that is explicitly
requested at run time

[J A pointer is an abstraction for a memory location
[J Dereference and address-of operators

[J Pointers and arrays

[] Creating new objects and arrays using new T

[] Deleting heap-allocated objects using del et e
ptr
[J Memory leaks, dangling pointers

7/21/98 CSE 143 Summer 1998 212

