
1

8/3/98 CSE 143 Summer 1998 282

Performance Analysis
[Sections 12.1-12.3, 12.5, 12.9]

8/3/98 CSE 143 Summer 1998 283

Why We Need Performance
Analysis

◆ Every problem has many possible solutions
◆ Example: Sorting

◆ How do we know which one is best?
◆ We’d like some generic basis for comparison

selection sort, insertion sort, bubble sort,
two-way bubble sort, tree sort, heap sort,
quicksort, shell sort, merge sort, radix sort,
bucket sort…

8/3/98 CSE 143 Summer 1998 284

What to Measure

◆ Performance can mean different things:
◆ Space efficiency: how much memory does the

program use?

◆ Time efficiency: how long does the program take to
run?

◆ User efficiency: how easy is it to use the program?

◆ We’ll focus on time efficiency
◆ Remember: correctness is more important than

performance!

8/3/98 CSE 143 Summer 1998 285

Benchmarking

◆ One solution is to use benchmarking
◆ Pick a standardized problem or set of problems
◆ Run every algorithm on the same problem set using

the same machine

◆ Results are very sensitive to choice of problems,
hardware, compiler, compiler options, load, …

◆ Results don't show how performance changes
with size of problem

◆ Good tool for comparing different machines

8/3/98 CSE 143 Summer 1998 286

Program Analysis

◆ When comparing algorithms, we use
mathematical program analysis techniques
◆ Mathematical analysis of source code

◆ Independent of any machine/memory/compiler details

◆ Gives very general idea of algorithm’s time
complexity

◆ Shows how running time depends on problem size

◆ Asymptotic analysis: don’t care about a small number
of irregularities

◆ An entire branch of Computer Science!
8/3/98 CSE 143 Summer 1998 287

Kinds of Analysis

◆ Best-case analysis: how fast does the program
perform in the best case?

◆ Worst-case analysis: how fast does it perform in
the worst possible case?

◆ Average-case analysis: what's the average
performance across all possible inputs of a
given size?

◆ We'll stick to worst-case analysis

2

8/3/98 CSE 143 Summer 1998 288

◆ Definition: for functions f(n) and g(n), we write

And say "f is big oh of g" when a constant
multiple of g is eventually always bigger than f.

◆ Mathematically: f(n)=O(g(n)) means that there
exists an integer N>0 and real number c>0 such
that for all n>N, f(n)<=cg(n)

◆ Goal: make g as simple and small as possible

Big-O Notation

f(n) = O(g(n))

8/3/98 CSE 143 Summer 1998 289

Huh?

◆ When analyzing performance, we create a
function that represents the running time of the
algorithm

◆ It’s hard to define the function precisely
◆ So we approximate the running time by finding a

reasonable big-O bound for the function
◆ "The running time of BlargSort is O(n3)"

◆ Comparing big-O bounds gives us a good sense
of performance

8/3/98 CSE 143 Summer 1998 290

Common big-O Bounds

◆ Let k be any fixed constant

O(k) = O(1) Constant Time
O(logkn) = O(log n) Logarithmic Time
O(n) Linear Time
O(n log n) n log n time
O(n2) Quadratic Time
O(n3) Cubic Time
O(nk) Polynomial Time
O(kn) Exponential Time

8/3/98 CSE 143 Summer 1998 291

Big-O Arithmetic

◆ Figure 12.2, page 546
◆ Rules to remember:

O(k*f) = O(f) (constants get absorbed)
O(f+g) = max(O(f), O(g)) ("lower-order terms" get absorbed)
O(f*g) = O(f)*O(g)

8/3/98 CSE 143 Summer 1998 292

Analyzing Simple Statements

int c = a / b;int c = a / b;

double r = s * t + 16.9 / s;double r = s * t + 16.9 / s;

int c = a / b;
int d = a * b;
int e = c + d;

int c = a / b;
int d = a * b;
int e = c + d;

Fraction f1(1);
Fraction f2(1, 43);
Fraction f3 = f1 + f2;

Fraction f1(1);
Fraction f2(1, 43);
Fraction f3 = f1 + f2;

IntStack s2 = s1;IntStack s2 = s1;

8/3/98 CSE 143 Summer 1998 293

Analyzing Loops

◆ Two questions
◆ How many times does the loop execute?
◆ What’s the performance bound of each iteration?

◆ Sometimes have to add in performance of set-
up and condition, too

int sumArray(int data[], int n)
{
 int total = 0;
 for(int idx = 0; idx < n; ++idx) {
 total += data[idx];
 }
 return total;
}

int sumArray(int data[], int n)
{
 int total = 0;
 for(int idx = 0; idx < n; ++idx) {
 total += data[idx];
 }
 return total;
}

3

8/3/98 CSE 143 Summer 1998 294

Bounded Loops

◆ What’s the big-O bound of this function?

int sumArray100(int data[])
{
 int total = 0;
 for(int idx = 0; idx < 100; ++idx) {
 total += data[idx];
 }
 return total;
}

int sumArray100(int data[])
{
 int total = 0;
 for(int idx = 0; idx < 100; ++idx) {
 total += data[idx];
 }
 return total;
}

8/3/98 CSE 143 Summer 1998 295

Nested Loops

◆ Recursively apply the rule for loops!

int countSevens(int data[][], int n)
{
 int total = 0;
 for(int idx = 0; idx < n; ++idx) {
 for(int jdx = 0; jdx < n; ++jdx) {
 if(data[idx][jdx] == 7) {
 ++total;
 }
 }
 }
 return total;
}

int countSevens(int data[][], int n)
{
 int total = 0;
 for(int idx = 0; idx < n; ++idx) {
 for(int jdx = 0; jdx < n; ++jdx) {
 if(data[idx][jdx] == 7) {
 ++total;
 }
 }
 }
 return total;
}

8/3/98 CSE 143 Summer 1998 296

Tricky Nested Loops

◆ Sometimes, the inner loop bound depends on
the outer index:

◆ Must analyze both loops together
◆ What’s the total number of iterations?

int triangle(int n) {
 int sum = 0;
 for(int idx = 0; idx < n; ++idx) {
 for(int jdx = 0; jdx < idx; ++jdx) {
 sum += idx * jdx;
 }
 }
 return sum;
}

int triangle(int n) {
 int sum = 0;
 for(int idx = 0; idx < n; ++idx) {
 for(int jdx = 0; jdx < idx; ++jdx) {
 sum += idx * jdx;
 }
 }
 return sum;
}

8/3/98 CSE 143 Summer 1998 297

Conditionals

◆ Only one branch of a conditional will ever be
evaluated

◆ Since we’re doing worst-case analysis, we’re
pessimistic

if(condition) {
 block1;
} else {
 block2;
}

if(condition) {
 block1;
} else {
 block2;
}

O(f)
O(g)

O(h)
O(f) + max(O(g),O(h))

8/3/98 CSE 143 Summer 1998 298

Analyzing Recursion

◆ The most difficult kind of performance analysis
◆ Two questions:

◆ How many recursive calls are there?
◆ How much work is done at each step in the

recursion?

◆ Example
int factorial(int n) {
 if(n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

int factorial(int n) {
 if(n == 0) {
 return 1;
 } else {
 return n * factorial(n - 1);
 }
}

8/3/98 CSE 143 Summer 1998 299

The Other Canonical Computer
Science Function

◆ Fibonacci numbers:

◆ Problem 1: write a recursive function to compute
the nth Fibonacci number

◆ Problem 2: What’s the big-O bound of your
function?

◆ Problem 3: Can you do better?

F1 = 1
F2 = 1
Fn = Fn-1 + Fn-2

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 143, …

4

8/3/98 CSE 143 Summer 1998 300

Sample Use of Performance
Analysis

◆ Compare IntStack::push() in the array
implementation vs. the linked-list
implementation

◆ Array implementation shifts all elements over to
make room for new item: O(n)

◆ Linked-list implementation simply adds on a new
box: O(1)

◆ Which would you choose?

8/3/98 CSE 143 Summer 1998 301

Summary

◆ Different notions of efficiency
◆ Different kinds of time efficiency
◆ Best-case, worst-case, average-case
◆ Big-O notation

◆ Arithmetic with Big-O

◆ Commonly used bounds

◆ Efficiency as a function of size of input

◆ Techniques for finding bounds on common
program structures

