Object-Oriented Programming
[Chapter 11]

8/14/98 CSE 143 Summer 1998 330

Introduction

[] Classes have given us tremendous benefit

Encapsulation: make details of implementation and
representation private

Classes help break down and organize the task of
writing a program

[J Classes are designed to enable other benefits
Inheritance (subclassing)
Dynamic dispatch (polymorphism)

[J Two very powerful programming tools!
They help us write less code

8/14/98 CSE 143 Summer 1998 331

Classes Using Other Classes

[J So far, we've seen one way that a class can
make use of another class
Use an instance of that class as a member variable

class Student Counci |
{

Student presi dent;
Student mi ni ster_of _propaganda;

}

[J We might call this a "has-a" relationship
A St udent Counci | "has-a" St udent

8/14/98 CSE 143 Summer 1998 332

Hierarchies of Organization

[J Often, we classify things in a hierarchy from
general to specific

[] Objects have more of a "is-a-kind-of"

relationship
A Dog "is-a-kind-of" Canine, a Shark "is-a-kind-of"
8/14/98 Anlmal CSE 143 Summer 1998 333
Al e o il a8 Al ol i

Inheritance

[J Inheritance is a way to encode the "is-a-kind-of"
relation in OO languages
Shark declares that it "is-a-kind-of" Fish by inheriting
from it

A derived class inherits from a base class by putting
" public Based assNane" in the class declaration

class yShark :public Fish
/kﬁ;rk-specmc stuff here

derived class <’ base class
(or subclass) [class st : public SequentialCollection { “« ' (orsuperciass)

¥

8/14/98 CSE 143 Summer 1998 334

Example: A Poi nt Class

[] Let's say we had the class Point

following class {

[J We can use inheritance

to store a colour field for double getX();

. . . double getY();
points without changing

this declaration!

public:
Point(double x, double y);

void print(ostream& os);

private:
double xpos;
double ypos;

8/14/98 CSE 143 Summer 1998 335

Col our Poi nt Without
Inheritance

class Col our Poi nt

[J This isn’t inheritance

- . public
U This is the interface we Col our Poi nt (doubl e x, double y,
want, but we’'ll have to ol our ¢);
redefine all Poi nt doubl e getX();
methods doubl e getY();
[J Inheritance will let us vord print(ostreant os);
5 private:
write less code! Goubl e xpos:
doubl e ypos;
Col our col our;
)
8/14/98 CSE 143 Summer 1998 336

Col our Poi nt With Inheritance

Col our Poi nt "is-a-kind-of"
Poi nt

Therefore Col our Poi nt has to
be able to do anything Poi nt
can

All fields and methods of

Poi nt are "inherited" by

Col our Poi nt - they are
transparently included!
Subclass can add new
methods, fields

Subclass can override
superclass behaviour

]

]

]

]

class Col our Poi nt public Point

{
publ i ¢
Col our Poi nt (doubl e x, double y,
Colour ¢);

/1 getX() is inherited from Point
/1 getY() is inherited from Point

/1 New accessor nethod for the
/1 colour field
Col our get Col our () ;

/1 Ve still need to redefine
// the print method!
void print(ostream& os);

private
/1 xpos is inherited from Point
/1 ypos is inherited from Point
ol our col our;

i

8/14/98 CSE 143 Summer 1998 337

Rules of Inheritance

[J All data and methods in superclass are

automatically inherited by subclass
As if you copied them info the subclass yourself

[J Changes in superclass are automatically
propagated into subclasses

[Public members of superclass visible to
subclass and client of subclass

[J Private members of superclass still not visible to
subclass or its clients

8/14/98 CSE 143 Summer 1998 338

ColourPoint Implementation

Point(x, y)
. colour(¢)

return colour;

{

<< ")/" << col our;

}

Col our Poi nt : : Col our Poi nt (doubl e x, doubl ey, Colour ¢)

Col our ol our Poi nt : : get Col our ()

voi d Col our Poi nt : < print(ostream& os)

0s << "(" << getX() << ", "

<< getY()

[J Superclass is initialized using memberwise
initialization on superclass name

8/14/98 CSE 143 Summer 1998 339

Col our Poi nt Client

Point p(1.0, 0.0);
Col ourPoi nt cpl(3.14, -45.5);

/1 No problem Col ourPoint::print is defined
cpl.print(cout)

/1 No problem calls Point::getX() and Point::getY()
/1 on Point subset of ColourPoint, they access private
/1 xpos and ypos fields

cout << cpl.getX() << " " << cpl.getY() << endl;

/1 Assign p to be the "Point slice' of cpl, the part
/1 of cpl's representation which vas inherited from
/1 Point
p = cpl;

8/14/98 CSE 143 Summer 1998 340

Subclass Tips

[JAdd " public Based assNane" to the first line of

class declaration

[JAdd": Based assName(argunents)" to beginning
of subclass constructor’s definition
Only needed to invoke non-default constructor
Default constructor of base class is otherwise invoked

automatically

[Don't rewrite inherited methods, instead inherit

them!

[J Don’t change or re-declare inherited data

simembers

CSE 143 Summer 1998 341

When to Use Inheritance?

[Most appropriate if all of the following are true:
The subclass A "is-a-kind-of” the base class B
Interface of derived class is superset of base class
interface (all functions from base and then some)
Representation of derived class is superset of base
class representation (all data from base and then
some)

Subclass implementation is similar to implementation
of base class

8/14/98 CSE 143 Summer 1998 342

When Not to Use Inheritance?

[1 Class B should not inherit from class A when
Derived class has the base class as a part
. When B "has-a" A, or when A "is-part-of" B
. Abird has-a wi ng, but is not a-kind-of wi ng

Derived class doesn’t have same representation
and/or interface as base class

. Can often reorganize class hierarchy to fix the
problem

. Use different class as base class
. Make small changes to other classes

8/14/98 CSE 143 Summer 1998 343

Subclasses And Private Data

[J It seems unfair to restrict subclass access in the
same way as client acces
Subclasses are a kind of "priveleged" client of the
superclass
] Sometimes, the superclass would like to give
subclass access, but not clients
Public is too open, private is too closed
Need third access specifier!

8/14/98 CSE 143 Summer 1998 344

Protected Access

[1In addition to public: andprivate:,thereisa
pr ot ect ed: access specifier

Visible to original class, visible in subclasses, still
hidden from clients

Class declaration can have any number of public,
protected and private sections

8/14/98 CSE 143 Summer 1998 345

Example Of Protected Access

class Point {
public:

protected
double xpos;
double ypos;

%

class ColourPoint : public Point {
public:
void setTemperature(double deg);

protected
Colour colour;
%

void ColourPoint::setTemperature(double deg)
{

colour = setColourFromTemperature(deg);
ypos = (deg + 40.0) / 150.0; // OK now!

8/14/98 CSE 143 Summer 1998 346

Invoking Overriden Methods

[1 Observation: Col our Poi nt : : pri nt does the
same thing as Poi nt: : pri nt, and then prints
out a colour

[] So perhaps we can call Poi nt: : print from
within Col our Poi nt: : pri nt

[J What happens here?

void ColourPoint::print(ostreamé& o0s)

print(os); // trying to call print method in superclass
0s << ", " << colour;

}

8/14/98 CSE 143 Summer 1998 347

Scope Resolution To The
Rescue!

[J It turns out that the :: operator allows us to
explicitly call an overriden method from the
superclass

voi d Col our Point::print(ostream& os)

{
Point::print(os);
os << ", " << col our;

}

[1 Based ass: : method(arguments) can be used
as long as Based ass really is a superclass

[J Remember that superclasses are "transitive"

8/14/98 CSE 143 Summer 1998 348

Inheritance and Constructors

[Constructors are not inherited!
Can't be, because their name specifies which class
they’re part of!
[J Instead, constructor of base class is called
automatically before constructor of derived class

Can call base class constructor explicitly to pass
parameters (like in Col our edPoi nt example)

If omitted, default constructor of base class is called
Constructors are called in “inside-out" order

8/14/98 CSE 143 Summer 1998 349

Substituting Derived Classes

[1 Recall that an instance of | Point p(1.0, 9.0);
. Col ourPoint cp(6.0, 7.0, red);
a derived class can
always be substituted for p=ep

an instance of a base yoid print Poi nt(Point pt)
class pt.print(cout);
Derived class guaranteed)
to have (at least) the same printPoint(p);
data and interface as base it cn)
class

[But you probably don't
get the behaviour you
want!

8/14/98 CSE 143 Summer 1998 350

Pointers And Inheritance

[J You can also substitute @ [point *pptr = new Point(1.0, 9.0).

H : Col our Poi nt *cpptr =
pointerto a derived class e Col our boint(6.0, 7.0, red);
for a pointerto a base Point *fooptr = cpptr;
class void printPoint(Point *ptr)

There’s still that guarantee { of stream of s("point.out”);

about data and interface P;r->rri n:() ofs);

ofs.cl ose();

Also holds for reference }

type.s . printPoint(pptr);

No information printPoint (cpptr);

disappears!!

[Unfortunately, we still
have the same

8/1ABJObIemS o CSE 143 Summer 1998 351

Static And Dynamic Types

[JIn C++, every variable has a static and a
dynamic type
Static type is declared type of variable
- Every variable has a single static type that never changes
Dynamic type is type of object the variable actually
contains
- Dynamic type can change during the program!
[Up to now, these have always been identical
But not any more!

‘Pui nt *nyPoi nt Pointer = new Col our Poi nt(3.14, 2.78, green); |

8/14/98 CSE 143 Summer 1998 352

Static Dispatch

[] "Dispatching" is the act of deciding which piece
of code to execute when a method is called
[Static dispatch means that the decision is made
statically, i.e. at compile time
Decision made based on static type of receiver

Point *nyPoi nt Poi nter = new Col ourPoint(3.14, 2.78, green);

/1 myPoint Pointer is a Point*, so call Point::print
nyPoi nt Poi nter->print(cout);

Idea: make the decision at runtime, based on the
dynamic type of the receiver!

8/14/98 CSE 143 Summer 1998 353

Dynamic Dispatch

[J C++ has a mechanism for declaring individual
methods as dynamically dispatched
"Don't necessarily call this function; call the overriding
version, if it exists"
[JIn base class, method is labeled with vi rt ual
keyword
Overriding versions in subclasses may or may not
have the vi rtual keyword; but use consistently for
better style

Rule of thumb: If you may ever need to override a

method, make it virtual !
8/14/98 CSE 143 Summer 1998 354

Example Of Dynamic Dispatch

class Point {
public:
virtual void print(ostream& os);
%
class ColourPoint : public Point {

public:
virtual void print(ostream& os);

-

Point *p = new ColourPoint(3.13, 5.66, ochre);

p->print(cout); // It's alive! ALIVE!!!

8/14/98 CSE 143 Summer 1998 355

Another Example Of Dynamic
Dispatch

class Gizmo {
public:
virtual bool moveRay(Raya. r);

%
class FslashGizmo : public Gizmo {
public:

virtual bool moveRay(Ray&r);
-
Gizmo *data = new Gizmo*[1001;
data[13] = new FslashGizmo();

data[14] = new Gizmo();

data 13]->moveRay(ray);
data[14]->moveRay(ray);

8/14/98 CSE 143 Summer 1998 356

How Does It Work?

[J1t's a secret!

8/14/98 CSE 143 Summer 1998 357

How Does It Work!?!!

class Point {
publ i c:
Poi nt (doubl e x, doubley);
virtual void print(ostreant os);
private:
doubl e xpos;
doubl e ypos;

int main(void)
cout << sizeof(Point) << endl;

I
cout << sizeof(double) + sizeof(double) << endl;
return 0;

[J This program prints out 24 and 16!

[J The compiler is automatically inserting extra
information into the class: __vfptr

8/14/98 CSE 143 Summer 1998 358

Dynamically-Dispatched Method
Calls

Point *p = new ColourPoint(3.13, 5.66, ochre);
p->print(cout);

[J The compiler notices that Poi nt : : print is
defined as vi rt ual
[J Instead of just calling Poi nt : : pri nt, it inserts
extra code to look inside Poi nt's __vfptr to
decide what function to call
[J This is slightly slower than static dispatch
Major research area in programming languages

Probably not so much slower that you should worry

about it
8/14/98 CSE 143 Summer 1998 359

A Practical Example

. class Widget {
[J Many user interface | public:

void getPosition(int& X, int& y);

toolkits are virtual void draw(Screend theScreen);
implemented as class | yze:
hierarchies int xpos;
intypos;
[J Helps manage K
COmp|eXity class Button : public Widget {
public:

virtual void draw(Screend theScreen);

[J Question: how should

we implement class Toolbar : public Widget {
W dget : : dr aw? public

virtual void draw(Screen& theScreen);

8/14/98 CSE 143 Summer 1998 360

Abstract Classes

[1 Some classes are so abstract that instances of
them shouldn’t even exist

What does it mean to have an instance of W dget ? of
Col | ecti on? of Ani nal ?

[1 An abstract class is a class that should not or
can not be instantiated
A concrete class can have instances
[Not every abstract class can be completely

Pure Virtual Functions

[J A pure virtual function is a placeholder that
concrete subclasses must fill in
[J Syntax: append "= 0" to method declaration

class Widget {
public:
virtual void draw(Screen& theScreen) =0;
¥
[J Compiler guarantees that class with pure virtual
functions cannot be instantiated

[J But you can still call them!

Widget *w = new Button();
w->draw(myScreen);

8/14/98 CSE 143 Summer 1998 362

implemented
What would we write for w dget : : dr aw?
8/14/98 CSE 143 Summer 1998 361
Summary

I "
[] Object-Oriented Programming
[J Inheritance
Use for "is-a-kind-of", not "has-a" relations
Classification hierarchies
Superclass (base class), subclass (derived class)
Overriding functions
[J Static and dynamic types
[J Dynamic Dispatch
Virtual functions

Abstract classes, pure virtual functions
8/14/98 CSE 143 Summer 1998 363

