
1

8/14/98 CSE 143 Summer 1998 330

Object-Oriented Programming
[Chapter 11]

8/14/98 CSE 143 Summer 1998 331

Introduction

◆ Classes have given us tremendous benefit
◆ Encapsulation: make details of implementation and

representation private

◆ Classes help break down and organize the task of
writing a program

◆ Classes are designed to enable other benefits
◆ Inheritance (subclassing)

◆ Dynamic dispatch (polymorphism)

◆ Two very powerful programming tools!
◆ They help us write less code

8/14/98 CSE 143 Summer 1998 332

Classes Using Other Classes

◆ So far, we’ve seen one way that a class can
make use of another class
◆ Use an instance of that class as a member variable

◆ We might call this a "has-a" relationship
◆ A StudentCouncil "has-a" Student

class StudentCouncil
{
 Student president;
 Student minister_of_propaganda;
};

class StudentCouncil
{
 Student president;
 Student minister_of_propaganda;
};

8/14/98 CSE 143 Summer 1998 333

Hierarchies of Organization

◆ Often, we classify things in a hierarchy from
general to specific

◆ Objects have more of a "is-a-kind-of"
relationship
◆ A Dog "is-a-kind-of" Canine, a Shark "is-a-kind-of"

Animal

◆ A Stack "is-a-kind-of" OrderedCollection

Collections

Ordered Collections Unordered Collections

Array

List

Queue

Stack

Record

Set

Direct Sequential

Bag

Heterogeneous Homogeneous

Table

Animal

Mammal Fish Reptile

Canine Feline

Dog

Tuna

Wolf Cat

Shark

CrocIguana

8/14/98 CSE 143 Summer 1998 334

Inheritance

◆ Inheritance is a way to encode the "is-a-kind-of"
relation in OO languages
◆ Shark declares that it "is-a-kind-of" Fish by inheriting

from it

◆ A derived class inherits from a base class by putting
": public BaseClassName" in the class declaration

class Shark : public Fish {
 // Shark-specific stuff here
};

class List : public SequentialCollection {
 …
};

class Shark : public Fish {
 // Shark-specific stuff here
};

class List : public SequentialCollection {
 …
};

derived class
(or subclass)

base class
(or superclass)

8/14/98 CSE 143 Summer 1998 335

Example: A Point Class

◆ Let’s say we had the
following class

◆ We can use inheritance
to store a colour field for
points without changing
this declaration!

class Point
{
public:
 Point(double x, double y);

 double getX();
 double getY();

 void print(ostream& os);

private:
 double xpos;
 double ypos;
};

class Point
{
public:
 Point(double x, double y);

 double getX();
 double getY();

 void print(ostream& os);

private:
 double xpos;
 double ypos;
};

2

8/14/98 CSE 143 Summer 1998 336

ColourPoint Without
Inheritance

◆ This isn’t inheritance

◆ This is the interface we
want, but we’ll have to
redefine all Point
methods

◆ Inheritance will let us
write less code!

class ColourPoint
{
public:
 ColourPoint(double x, double y,
 Colour c);

 double getX();
 double getY();

 void print(ostream& os);

private:
 double xpos;
 double ypos;
 Colour colour;
};

class ColourPoint
{
public:
 ColourPoint(double x, double y,
 Colour c);

 double getX();
 double getY();

 void print(ostream& os);

private:
 double xpos;
 double ypos;
 Colour colour;
};

8/14/98 CSE 143 Summer 1998 337

ColourPoint With Inheritance

◆ ColourPoint "is-a-kind-of"
Point

◆ Therefore ColourPoint has to
be able to do anything Point
can

◆ All fields and methods of
Point are "inherited" by
ColourPoint - they are
transparently included!

◆ Subclass can add new
methods, fields

◆ Subclass can override
superclass behaviour

class ColourPoint : public Point
{
public:
 ColourPoint(double x, double y,
 Colour c);

 // getX() is inherited from Point
 // getY() is inherited from Point

 // New accessor method for the
 // colour field
 Colour getColour();

 // We still need to redefine
 // the print method!
 void print(ostream& os);

private:
 // xpos is inherited from Point
 // ypos is inherited from Point
 Colour colour;
};

class ColourPoint : public Point
{
public:
 ColourPoint(double x, double y,
 Colour c);

 // getX() is inherited from Point
 // getY() is inherited from Point

 // New accessor method for the
 // colour field
 Colour getColour();

 // We still need to redefine
 // the print method!
 void print(ostream& os);

private:
 // xpos is inherited from Point
 // ypos is inherited from Point
 Colour colour;
};

8/14/98 CSE 143 Summer 1998 338

Rules of Inheritance

◆ All data and methods in superclass are
automatically inherited by subclass
◆ As if you copied them info the subclass yourself

◆ Changes in superclass are automatically
propagated into subclasses

◆ Public members of superclass visible to
subclass and client of subclass

◆ Private members of superclass still not visible to
subclass or its clients

8/14/98 CSE 143 Summer 1998 339

ColourPoint::ColourPoint(double x, double y, Colour c)
 : Point(x, y)
 , colour(c)
{}

Colour ColourPoint::getColour()
{
 return colour;
}

void ColourPoint::print(ostream& os)
{
 os << "(" << getX() << ", " << getY()
 << ")/" << colour;
}

ColourPoint::ColourPoint(double x, double y, Colour c)
 : Point(x, y)
 , colour(c)
{}

Colour ColourPoint::getColour()
{
 return colour;
}

void ColourPoint::print(ostream& os)
{
 os << "(" << getX() << ", " << getY()
 << ")/" << colour;
}

ColourPoint Implementation

◆ Superclass is initialized using memberwise
initialization on superclass name

8/14/98 CSE 143 Summer 1998 340

ColourPoint Client

Point p(1.0, 0.0);
ColourPoint cp1(3.14, -45.5);

// No problem: ColourPoint::print is defined
cp1.print(cout);

// No problem: calls Point::getX() and Point::getY()
// on Point subset of ColourPoint, they access private
// xpos and ypos fields
cout << cp1.getX() << " " << cp1.getY() << endl;

// Assign p to be the "Point slice" of cp1, the part
// of cp1’s representation which was inherited from
// Point
p = cp1;

Point p(1.0, 0.0);
ColourPoint cp1(3.14, -45.5);

// No problem: ColourPoint::print is defined
cp1.print(cout);

// No problem: calls Point::getX() and Point::getY()
// on Point subset of ColourPoint, they access private
// xpos and ypos fields
cout << cp1.getX() << " " << cp1.getY() << endl;

// Assign p to be the "Point slice" of cp1, the part
// of cp1’s representation which was inherited from
// Point
p = cp1;

8/14/98 CSE 143 Summer 1998 341

Subclass Tips

◆ Add ": public BaseClassName" to the first line of
class declaration

◆ Add ": BaseClassName(arguments)" to beginning
of subclass constructor’s definition
◆ Only needed to invoke non-default constructor

◆ Default constructor of base class is otherwise invoked
automatically

◆ Don’t rewrite inherited methods, instead inherit
them!

◆ Don’t change or re-declare inherited data
members

3

8/14/98 CSE 143 Summer 1998 342

When to Use Inheritance?

◆ Most appropriate if all of the following are true:
◆ The subclass A "is-a-kind-of” the base class B
◆ Interface of derived class is superset of base class

interface (all functions from base and then some)

◆ Representation of derived class is superset of base
class representation (all data from base and then
some)

◆ Subclass implementation is similar to implementation
of base class

8/14/98 CSE 143 Summer 1998 343

When Not to Use Inheritance?

◆ Class B should not inherit from class A when
◆ Derived class has the base class as a part

● When B "has-a" A, or when A "is-part-of" B

● A bird has-a wing, but is not a-kind-of wing

◆ Derived class doesn’t have same representation
and/or interface as base class

● Can often reorganize class hierarchy to fix the
problem

● Use different class as base class
● Make small changes to other classes

8/14/98 CSE 143 Summer 1998 344

Subclasses And Private Data

◆ It seems unfair to restrict subclass access in the
same way as client acces
◆ Subclasses are a kind of "priveleged" client of the

superclass

◆ Sometimes, the superclass would like to give
subclass access, but not clients
◆ Public is too open, private is too closed

◆ Need third access specifier!

8/14/98 CSE 143 Summer 1998 345

Protected Access

◆ In addition to public: and private:, there is a
protected: access specifier
◆ Visible to original class, visible in subclasses, still

hidden from clients

◆ Class declaration can have any number of public,
protected and private sections

8/14/98 CSE 143 Summer 1998 346

Example Of Protected Access

class Point {
public:
 …
protected:
 double xpos;
 double ypos;
};

class ColourPoint : public Point {
public:
 void setTemperature(double deg);
 …
protected:
 Colour colour;
};

void ColourPoint::setTemperature(double deg)
{
 colour = setColourFromTemperature(deg);
 ypos = (deg + 40.0) / 150.0; // OK now!
}

class Point {
public:
 …
protected :
 double xpos;
 double ypos;
};

class ColourPoint : public Point {
public:
 void setTemperature(double deg);
 …
protected :
 Colour colour;
};

void ColourPoint::setTemperature(double deg)
{
 colour = setColourFromTemperature(deg);
 ypos = (deg + 40.0) / 150.0; // OK now!
}

8/14/98 CSE 143 Summer 1998 347

Invoking Overriden Methods

◆ Observation: ColourPoint::print does the
same thing as Point::print, and then prints
out a colour

◆ So perhaps we can call Point::print from
within ColourPoint::print

◆ What happens here?
void ColourPoint::print(ostream& os)
{
 print(os); // trying to call print method in superclass
 os << ", " << colour;
}

void ColourPoint::print(ostream& os)
{
 print(os); // trying to call print method in superclass
 os << ", " << colour;
}

4

8/14/98 CSE 143 Summer 1998 348

Scope Resolution To The
Rescue!

◆ It turns out that the :: operator allows us to
explicitly call an overriden method from the
superclass

◆ BaseClass::method(arguments) can be used
as long as BaseClass really is a superclass

◆ Remember that superclasses are "transitive"

void ColourPoint::print(ostream& os)
{
 Point::print(os);
 os << ", " << colour;
}

void ColourPoint::print(ostream& os)
{
 Point::print(os);
 os << ", " << colour;
}

8/14/98 CSE 143 Summer 1998 349

Inheritance and Constructors

◆ Constructors are not inherited!
◆ Can’t be, because their name specifies which class

they’re part of!

◆ Instead, constructor of base class is called
automatically before constructor of derived class
◆ Can call base class constructor explicitly to pass

parameters (like in ColouredPoint example)

◆ If omitted, default constructor of base class is called

◆ Constructors are called in "inside-out" order

8/14/98 CSE 143 Summer 1998 350

Substituting Derived Classes

◆ Recall that an instance of
a derived class can
always be substituted for
an instance of a base
class

◆ Derived class guaranteed
to have (at least) the same
data and interface as base
class

◆ But you probably don't
get the behaviour you
want!

Point p(1.0, 9.0);
ColourPoint cp(6.0, 7.0, red);

p = cp;

void printPoint(Point pt)
{
 pt.print(cout);
}

printPoint(p);
printPoint(cp);

Point p(1.0, 9.0);
ColourPoint cp(6.0, 7.0, red);

p = cp;

void printPoint(Point pt)
{
 pt.print(cout);
}

printPoint(p);
printPoint(cp);

8/14/98 CSE 143 Summer 1998 351

Pointers And Inheritance

◆ You can also substitute a
pointer to a derived class
for a pointer to a base
class

◆ There’s still that guarantee
about data and interface

◆ Also holds for reference
types

◆ No information
disappears!!

◆ Unfortunately, we still
have the same
problems…

Point *pptr = new Point(1.0, 9.0);
ColourPoint *cpptr =
 new ColourPoint(6.0, 7.0, red);
Point *fooptr = cpptr;

void printPoint(Point *ptr)
{
 ofstream ofs("point.out");
 ptr->print(ofs);
 ofs.close();
}

printPoint(pptr);
printPoint(cpptr);

Point *pptr = new Point(1.0, 9.0);
ColourPoint *cpptr =
 new ColourPoint(6.0, 7.0, red);
Point *fooptr = cpptr;

void printPoint(Point *ptr)
{
 ofstream ofs("point.out");
 ptr->print(ofs);
 ofs.close();
}

printPoint(pptr);
printPoint(cpptr);

8/14/98 CSE 143 Summer 1998 352

Static And Dynamic Types

◆ In C++, every variable has a static and a
dynamic type
◆ Static type is declared type of variable

● Every variable has a single static type that never changes

◆ Dynamic type is type of object the variable actually
contains

● Dynamic type can change during the program!

◆ Up to now, these have always been identical
◆ But not any more!

Point *myPointPointer = new ColourPoint(3.14, 2.78, green);Point *myPointPointer = new ColourPoint(3.14, 2.78, green);

8/14/98 CSE 143 Summer 1998 353

Static Dispatch

◆ "Dispatching" is the act of deciding which piece
of code to execute when a method is called

◆ Static dispatch means that the decision is made
statically, i.e. at compile time
◆ Decision made based on static type of receiver

◆ Idea: make the decision at runtime, based on the
dynamic type of the receiver!

Point *myPointPointer = new ColourPoint(3.14, 2.78, green);

// myPointPointer is a Point*, so call Point::print
myPointPointer->print(cout);

Point *myPointPointer = new ColourPoint(3.14, 2.78, green);

// myPointPointer is a Point*, so call Point::print
myPointPointer->print(cout);

5

8/14/98 CSE 143 Summer 1998 354

Dynamic Dispatch

◆ C++ has a mechanism for declaring individual
methods as dynamically dispatched
◆ "Don’t necessarily call this function; call the overriding

version, if it exists"

◆ In base class, method is labeled with virtual
keyword
◆ Overriding versions in subclasses may or may not

have the virtual keyword; but use consistently for
better style

◆ Rule of thumb: If you may ever need to override a
method, make it virtual!

8/14/98 CSE 143 Summer 1998 355

Example Of Dynamic Dispatch

class Point {
public:
 virtual void print(ostream& os);
 …
};

class ColourPoint : public Point {
public:
 virtual void print(ostream& os);
 …
};

Point *p = new ColourPoint(3.13, 5.66, ochre);

p->print(cout); // It's alive! ALIVE!!!

class Point {
public:
 virtual void print(ostream& os);
 …
};

class ColourPoint : public Point {
public:
 virtual void print(ostream& os);
 …
};

Point *p = new ColourPoint(3.13, 5.66, ochre);

p->print(cout); // It's alive! ALIVE!!!

8/14/98 CSE 143 Summer 1998 356

Another Example Of Dynamic
Dispatch

class Gizmo {
public:
 virtual bool moveRay(Ray& r);
 …
};

class FslashGizmo : public Gizmo {
public:
 virtual bool moveRay(Ray& r);
 …
};

…
Gizmo **data = new Gizmo*[100];
data[13] = new FslashGizmo();
data[14] = new Gizmo();
…
data[13]->moveRay(ray);
data[14]->moveRay(ray);
…

class Gizmo {
public:
 virtual bool moveRay(Ray& r);
 …
};

class FslashGizmo : public Gizmo {
public:
 virtual bool moveRay(Ray& r);
 …
};

…
Gizmo **data = new Gizmo*[100];
data[13] = new FslashGizmo();
data[14] = new Gizmo();
…
data[13]->moveRay(ray);
data[14]->moveRay(ray);
…

8/14/98 CSE 143 Summer 1998 357

How Does It Work?

◆ It’s a secret!

8/14/98 CSE 143 Summer 1998 358

How Does It Work!?!!

◆ This program prints out 24 and 16!
◆ The compiler is automatically inserting extra

information into the class: __vfptr

class Point {
public:
 Point(double x, double y);
 virtual void print(ostream& os);
private:
 double xpos;
 double ypos;
};

int main(void)
{
 cout << sizeof(Point) << endl;
 cout << sizeof(double) + sizeof(double) << endl;
 return 0;
}

class Point {
public:
 Point(double x, double y);
 virtual void print(ostream& os);
private:
 double xpos;
 double ypos;
};

int main(void)
{
 cout << sizeof(Point) << endl;
 cout << sizeof(double) + sizeof(double) << endl;
 return 0;
}

8/14/98 CSE 143 Summer 1998 359

Dynamically-Dispatched Method
Calls

◆ The compiler notices that Point::print is
defined as virtual

◆ Instead of just calling Point::print, it inserts
extra code to look inside Point’s __vfptr to
decide what function to call

◆ This is slightly slower than static dispatch
◆ Major research area in programming languages

◆ Probably not so much slower that you should worry
about it

Point *p = new ColourPoint(3.13, 5.66, ochre);
p->print(cout);

Point *p = new ColourPoint(3.13, 5.66, ochre);
p->print(cout);

6

8/14/98 CSE 143 Summer 1998 360

A Practical Example

class Widget {
public:
 void getPosition(int& x, int& y);
 virtual void draw(Screen& theScreen);
 …
private:
 int xpos;
 int ypos;
};

class Button : public Widget {
public:
 virtual void draw(Screen& theScreen);
 …
};

class Toolbar : public Widget {
public:
 virtual void draw(Screen& theScreen);
};

class Widget {
public:
 void getPosition(int& x, int& y);
 virtual void draw(Screen& theScreen);
 …
private:
 int xpos;
 int ypos;
};

class Button : public Widget {
public:
 virtual void draw(Screen& theScreen);
 …
};

class Toolbar : public Widget {
public:
 virtual void draw(Screen& theScreen);
};

◆ Many user interface
toolkits are
implemented as class
hierarchies

◆ Helps manage
complexity

◆ Question: how should
we implement
Widget::draw?

8/14/98 CSE 143 Summer 1998 361

Abstract Classes

◆ Some classes are so abstract that instances of
them shouldn’t even exist
◆ What does it mean to have an instance of Widget? of
Collection? of Animal?

◆ An abstract class is a class that should not or
can not be instantiated
◆ A concrete class can have instances

◆ Not every abstract class can be completely
implemented
◆ What would we write for Widget::draw?

8/14/98 CSE 143 Summer 1998 362

Pure Virtual Functions

◆ A pure virtual function is a placeholder that
concrete subclasses must fill in

◆ Syntax: append "= 0" to method declaration

◆ Compiler guarantees that class with pure virtual
functions cannot be instantiated

◆ But you can still call them!

class Widget {
public:
 virtual void draw(Screen& theScreen) = 0;
};

class Widget {
public:
 virtual void draw(Screen& theScreen) = 0 ;
};

Widget *w = new Button();
w->draw(myScreen);

Widget *w = new Button();
w->draw(myScreen);

8/14/98 CSE 143 Summer 1998 363

Summary

◆ Object-Oriented Programming
◆ Inheritance

◆ Use for "is-a-kind-of", not "has-a" relations

◆ Classification hierarchies

◆ Superclass (base class), subclass (derived class)

◆ Overriding functions

◆ Static and dynamic types
◆ Dynamic Dispatch

◆ Virtual functions

◆ Abstract classes, pure virtual functions

