NULL and t hi s

7/21/98 CSE 143 Summer 1998 213

Pointing to Nothing

[J What's the default value for a pointer variable?

[ Need a distinguished address meaning "not
pointing to anything"

7/21/98 CSE 143 Summer 1998 214

The NULL Pointer

[J NULL (defined in st dl i b. h) can be used to point
to nothing
Internally, NULL is just the memory location 0

The compiler guarantees that nothing will get stored
there

] NULL is compatible with pointers of every type

7/21/98 CSE 143 Summer 1998 215

Using the NULL Pointer

[J As a default pointer value:

Fraction *pf = NULL;

if( pf == NULL ) {
pf = new Fraction( 22, 7 );
}

[] As a terminator (soon)

for( Node *n = front; n != NULL; n = n->next)

{
/I Do something to data atn

7/21/98 CSE 143 Summer 1998 216

The Receiver of a Method

bool Fraction::isEven()

if(NaNQ ) {
return false;

}
return (den == 1) && ((num % 2) == 0);

[1Where do num den and NaNcome from?

They are associated with the (implicit) receiver of the
method

[J But how does this work?
How does the method get access to a particular
receiver?

7/21/98 CSE 143 Summer 1998 217

The t hi s Pointer

[J Inside methods, there’s a "hidden" extra
parameter: t hi s
t hi s always points to the receiver of the method
For a method of class C, thi s has type pointer-to-C
] All implicit references to the receiver are actually
referenced via the t hi s pointer:

bool Fraction: :i sEven()

i1( this->NaN) ) {
return false;

}
return (this->den = 1) & ((this->num%2) == 0);

}

7/21/98 CSE 143 Summer 1998 218




How Classes Work: Declaration

class Fraction

publ i c:
Fraction( int n, int d);
bool NaN() ;
bool i sEven();

private:
int num
int den;

)

struct Fraction
{

int num
int den;
in

void Fraction_constructor( Fraction *this, int n, int d);
bool Fraction_isEven( Fraction *this );
bool Fraction_NaN Fraction *this );

7/21/98 CSE 143 Summer 1998 219

How Classes Work:
Implementation

Fraction: :Fraction( int n, int d)
{

num= n;
den = d;

}
bool Fraction: :i sEven()

NN ) |{
return false;

}
return (den == 1) & ((num%32) == 0);

void Fraction_constructor( Fraction *this, int n )
{

this->num= n;
this->den = 1;

}
bool Fraction_isEven( Fraction *this )

if( Fraction_NaN this ) ) {
return false;

}
return (this->den = 1) & ((this->num%2) == 0);
7/21/98 220

How Classes Work: Client

Fraction frac( 5, 1);

if( frac.iseven() ) {
cout << "Hellol" << end;
}

U

Fraction frac
Fraction__constructor( &rac, 5, 1);

if( Fraction_isEven( &rac) ) {
cout << "Hellol" << endl;
}

7/121/98 CSE 143 Summer 1998 221

Effective Use of t hi s

[J Use to call other operators with same receiver:

bool Fraction:: operator !=( Fraction other )

return 1( (*this) == other );

[J Use to respect C++ "idiom" (e.g. in assignment
operator)

Fraction& Fraction: :operator =( Fraction other )
{

num = ot her. num
den = ot her . den;

return *this;

7/21/98 CSE 143 Summer 1998 222

Summary

[J NULL can be used as the value of a pointer that
points to nothing

0 thi s can be used as a way to point to the
receiver of a method

| Classes are implemented by passing t hi s as a
hidden extra parameter in methods

7/21/98 CSE 143 Summer 1998 223




