Recursion
[Sections 6.1,6.3-6.7]

7/27/98 CSE 143 Summer1998 243

Recursion

[] A recursive definition is one which is expressed
in terms of itself

[J Examples:
"A horse is a four-legged animal which is the progeny
of two horses"
Compound interest: “The value after 10 years is
equal to the interest rate times the value after 9
years.”
An arithmetic expression is either a number, or two
arithmetic expressions with a +,-,* or / between them

7/27/98 CSE 143 Summer1998 244

Computer Science Examples

[J We've already seen recursive data structures:

struct Node {
int data;
Node *1ink;

b

[J Functions (and methods) are also allowed to be
defined recursively
Recursive function: a function that calls itself
(possibly indirectly)

Recursive functions are fundamental in computer
science

7/27/98 CSE 143 Summer1998 245

The Essense of Recursive
Computation

[J Recursive functions only work when there’s a
well-defined notion of making progress

[JIf a function calls itself to solve a subproblem,
two things had better happen:

The subproblem has to be simpler than the original
problem

Some subproblems have to be so simple that you
can solve them without recursion (bottoming out)

7/27/98 CSE 143 Summer1998 246

What to Look for

Check if we've
bottomed out

int myRecursiveFunction(Data somelnput)
{
if(isRefllySimple(somelnput)) {
ition =

If so, compute the
answer without recursion

int sof
retum|solution;

Somelnput);

If not,
——Break the problem into
simpler subproblems
—=Use recursion to solve
the subproblems
{—=Combine the solutions
to the subproblems
into a solution to the

Yelse {
Data 1ub1 = 1(somelnput);

Data $ubN = findSubproblemN(somelnput);

int valt = myRecursiveFunction(subl);

int valN = myRecursiveFunction(subN);

int solfiion = combineSubproblems(vall ..., valN);

}
}

MK

original problem

7/27/98 CSE 143 Summer1998 247

CSE 143

Factorial

['n! (“n factorial”) can be defined in two ways:
Non-recursive definition

.nl=n*(n-1)*(n2)..*2*1

Recursive definition
. 1 ifn=0
=1 neay itn>0

7/27/98 CSE 143 Summer1998 248

The Recursive Factorial Function

int factorial(int n)

if(n==0) {
return 1;
} else {
return n * factorial(n- 1);
}

}

[Note that the factorial function invokes itself.
[1 How can this work?

7/127/98 CSE 143 Summer1998 249

Automatic Variables

[Recall:
Static memory is set aside ahead of time
Dynamic memory is explicitly managed at runtime
[J Automatic memory holds local variables and
parameters to functions
Organized into a stack
Size changes dynamically at runtime

Managed automatically by the compiler
- Block entered: push stack
- Block exited: pop stack

7/127/98 CSE 143 Summer1998 250

Activation Records

[J An activation record is a struct that holds
information about a function call
Function parameters, local variables, other stuff
[] A single function can have multiple activation
records on the stack simultaneously
This is how recursive functions are possible
Each recursive call gets its own activation record

7127/98 CSE 143 Summer1998 251

Example

int factorial(int n)

if(n==0) {
return 1;
} else {
int sub = factorial(n- 1);
return n * sub;
}
}

int main(void)
int x = factorial(4);

cout << "4 =" << x << endl;

}

7127/98 CSE 143 Summer1998 252

Infinite Recursion

[J Remember to always check for bottoming out
first
Look for "base case"
If not... i(nl badFactorial (int n)

int sub = badFactorial(n - 1);
if(sub==1) {

return 1;
} else {

return n * sub;

}

}

[1What is the value of badFactorial (2)?

7127/98 CSE 143 Summer1998 253

CSE 143

Recursive Algorithms for
Recursive Data Structures

[J Many pointer-based data structures use the
pointer-to-another-instance idea

[J This recursive structure allows for elegant
recursive algorithms

7/127/98 CSE 143 Summer1998 254

Printing a Linked List

void IntList::print()

printFrom(front);

void IntList::printFron(Node *from)
{

if(fromt= NUL) {
cout << from>data << " "
printFron{ from>link);

[J How many recursive calls do we make when
printing the list <1,2,3,4>?

7/127/98 CSE 143 Summer1998 255

Printing in Reverse Order

[Difficult problem: in our singly-linked list, links
only point forward

[J How can we modify recursive list printing to print
in reverse?

7/127/98 CSE 143 Summer1998 256

Other Recursive List Operations

[J Can also use recursion to, e.g. sum a list

int IntList::sunFron(Node *from)

if(from== NULL) {
return 0;
} else {

return from>data + sunfrom(from>link);

}

}

[J How would you modify this to count the length of
alist? Add N to each element of a list? Find
the maximum in the list?

7127/98 CSE 143 Summer1998 257

Recursion: Not Just for Lists

[J Works fine on arrays:

void selectionSort(int data[], int size, int from)

if((size - from > 1) {
int mo=o;
for(int idx = from+ 1; idx < size; idx++) {
if(data[idx] < data[m]) {
mo=id

}

}
swap(data[from], data[m]);
selectionSort(data, size, from+ 1);

}

}
[Another example: trees

7127/98 CSE 143 Summer1998 258

Challenge Problem

[1 What does this function do?

int nystery(int x)

assert(x > 0);
if(x=1){
return O;
} else {
return 1 + nystery(x / 2);
}

7127/98 CSE 143 Summer1998 259

Recursion vs. Iteration

[J When to use recursion?
Processing recursive data structures

Some algorithms can be expressed more elegantly in
recursive form

. “Divide & Conquer” algorithms
[J When to use iteration instead?
Nonrecursive data structures
Problems without obvious recursive structure
Sometimes because it's faster

7/127/98 CSE 143 Summer1998 260

CSE 143

Which is Better?

[JIf a single recursive call is at the very end of the
function:

Known as tail recursion

Easy to rewrite iteratively (many good compilers can
actually do this for you...)

] Recursive problems that are not tail recursive
are harder to write nonrecursively
Usually have to simulate recursion with a stack

7/27/98 CSE 143 Summer1998 261

In Theory...

[J Some programming languages provide no loops
(loops are implemented through if and
recursion)

"Functional" languages

[J Any iteration can be rewritten using recursion,
and vice-versa

[J But that doesn’t mean they're equally easy to
use in all situations!

7/27/98 CSE 143 Summer1998 262

Summary

[J Recursion is something defined in terms of itself
Recursive procedures
Recursive data structures

[Activation records make it work

[J Two parts of all recursive functions
Base case(s) - bottom out and solve non-recursively

Recursive case(s) - solve a simpler recursive
subproblem

Base case always checked first

7/27/98 CSE 143 Summer1998 263

CSE 143

