
CSE 143 1

7/14/98 CSE 143 Summer 1998 144

Collections
[Chapter 4]

7/14/98 CSE 143 Summer 1998 145

Collection ADTs

◆ Many standard ADTs describe collections
◆ Data structures that manage groups of data
◆ Operations don’t depend of type of data being stored

◆ Each collection effective for certain patterns of usage

◆ Size of group is often not known in advance

◆ Extremely important in computer science
◆ Used in just about every program

◆ Analyses to measure performance of collections

◆ Powerful tool for problem solving

7/14/98 CSE 143 Summer 1998 146

Classification of Collections

◆ We can classify collections along several
dimensions:
◆ Order of data: Linear (ordered) vs. Nonlinear

(unordered)

◆ Method of access: Direct vs. Sequential

◆ Type of data: Homogenous vs. Heterogeneous

◆ Size: Fixed vs. Variable

◆ Note: these classifications apply to the abstract
view of the collection, not the implementation

7/14/98 CSE 143 Summer 1998 147

Classification of ADTs

Collections

Ordered Collections Unordered Collections

Array

List

Queue

Stack

Record

Set

Direct Sequential

Bag

Heterogeneous Homogeneous

Table

7/14/98 CSE 143 Summer 1998 148

Collections in C++

◆ Direct support for records (struct) and arrays

◆ Other ADTs must be implemented
◆ No absolute standards
◆ Many conventional operations and concepts

◆ STL - Standard Template Library
◆ Official C++ standard as of this year

◆ Contains many ADTs and operations on them

◆ Radically changes approach to C++ programming

◆ Not covered in this course

7/14/98 CSE 143 Summer 1998 149

Our Plan

◆ Look at built-in types in terms of collection ADTs
◆ The List ADT

◆ Build a specification
◆ Provide a simple implementation

◆ Visit some of the other ADTs
◆ Learn the conventional operations

◆ Consider possible implementations



CSE 143 2

7/14/98 CSE 143 Summer 1998 150

Arrays as ADTs [Section 4.3]

◆ Classification
◆ Linear sequence of homogeneous elements
◆ Fixed length

◆ Direct access

◆ Operations on arrays
◆ Direct indexing using [] operator (operator [])

◆ Built in arrays provide no bounds checking

◆ No searching, sorting, insertion, etc.

7/14/98 CSE 143 Summer 1998 151

Records as ADTs [Section 4.4]

◆ Classification
◆ Nonlinear collection of heterogeneous elements

(fields)

◆ Fixed number of elements

◆ Direct access

◆ Operations on records
◆ Accessing elements directly through . operator

◆ In C++, we’ll use classes to implement records,
providing encapsulation via access functions.
◆ Access functions provide "read-only" variables

7/14/98 CSE 143 Summer 1998 152

The List ADT [Section 4.5]

◆ Attributes of list type:
◆ Linear sequence of homogeneous elements
◆ Varying length

◆ Sequential access

◆ Operations on lists
◆ Navigation via a cursor

◆ Look at element at cursor position

◆ Test if full or empty

◆ Insert, delete elements

7/14/98 CSE 143 Summer 1998 153

Head Tail

elem0

A list of size N

List Terminology

◆ Head: first element in list
◆ Tail: last element in list
◆ Cursor: “current” element of list
◆ Size: number of elements in list

elem1 elem2 elem3 elemN-1

Cursor

… 

7/14/98 CSE 143 Summer 1998 154

Lists in C++

◆ No predefined list type, so write our own
◆ Use the class construct

◆ Member functions for list operations
◆ Private data for list representation

◆ We’ll write a list of integers
◆ But only for convenience

7/14/98 CSE 143 Summer 1998 155

Summary (I)

◆ Collections are fundamental in computer
science

◆ Several dimensions of classification
◆ Ordering, access mechanism, homogeneity, size

limits

◆ Arrays:
◆ Ordered, direct access by index, homogeneous, fixed

size

◆ Records:
◆ Unordered, direct access by name, heterogeneous,

fixed size



CSE 143 3

7/14/98 CSE 143 Summer 1998 156

Summary (II)

◆ Lists
◆ Ordered, sequential access, homogeneous, variable

size

◆ List terminology
● head, tail, cursor

◆ List operations

◆ Study the sample code!


