
CSE 143 1

7/8/98 CSE 143 Summer 1998 94

Abstract Data Types
[Sections 1.1-1.5, 3.1-3.2]

7/8/98 CSE 143 Summer 1998 95

Abstraction in Programming

◆ The type int is an abstraction for a way of
interpreting bits in memory as a number

◆ A struct is an abstraction of a collection of
related data items

◆ A while loop is an abstraction for conditional
repetition

◆ A function is a programmer-designed
abstraction for some computation

7/8/98 CSE 143 Summer 1998 96

Data Abstraction

◆ Data abstractions have two components
◆ Set of possible values (state)
◆ Operations that can be applied to values (behaviour)

◆ Examples
◆ Integers:

● 1, 2, -17148, etc.

● arithmetic operations, printing, etc.

◆ Arrays:

● { 1, 2, 3 }, { true, true, false, true }, etc.
● indexing operations, other operations?

7/8/98 CSE 143 Summer 1998 97

Abstract Data Types (ADTs)

◆ A (user-defined) data abstraction that acts as a
new type in the language

◆ Specification defines behaviour, including
constructors
◆ Range of possible values usually defined implicitly

◆ Implementation defines representation and
gives implementations for operations
◆ May contain "private" data and operations

◆ Often, many implementations are possible

7/8/98 CSE 143 Summer 1998 98

Types vs. Instances

◆ Types
◆ General category
◆ Usually few in number
◆ Some built in (int, char, double, etc.)

◆ Programmer-defined (arrays, structs, enums, ADTs,
etc.)

◆ Instances
◆ Particular values of a given type

◆ In C++, variables can only hold instances, not types

◆ May have many instances of a given type
7/8/98 CSE 143 Summer 1998 99

Classes

◆ C++ has a class construct for building new
ADTs

◆ Syntax is like C struct

◆ Enhancements over struct
◆ Can specify private vs. public members

◆ Members can be functions, not just data

class Student
{

double gpa;
// Other class member
// declarations here

};

class Student
{

double gpa;
// Other class member
// declarations here

};

CSE 143 2

7/8/98 CSE 143 Summer 1998 100

A Simple Class

◆ Inside of a class definition, you can declare
variables and functions

◆ Members can be public or private

class Student
{
public:

void init(char name[]);
void giveBonus(double amount);
double getGPA();

private:
char name[65];
double gpa;

};

class Student
{
public:

void init(char name[]);
void giveBonus(double amount);
double getGPA();

private:
char name[65];
double gpa;

};

7/8/98 CSE 143 Summer 1998 101

Class Basics

◆ Private access is the default
◆ Private members are “hidden” from clients. The

compiler will not allow client code to access
them.

◆ Public members may be used directly by clients
◆ For the given class, tell me:

◆ How many data members? private? public?

◆ How many member functions?

◆ What can the client use directly?

7/8/98 CSE 143 Summer 1998 102

How Clients Use a Class

◆ A class is a new type!
◆ Declare variables of that type:

◆ Use as parameter

◆ Use it to build other types (data decomposition):

Student craig;Student craig;

void processStudent(Student aStudent) {…};void processStudent(Student aStudent) {…};

class StudentCouncil
{

Student president;
Student minister_of_propaganda;
…

};

class StudentCouncil
{

Student president;
Student minister_of_propaganda;
…

};

7/8/98 CSE 143 Summer 1998 103

A Class is a Type

◆ The code above creates fresh instances of the
Student and StudentCouncil classes

◆ Each instance has its own copy
of the data members of its class:

Student s1, s2;
StudentCouncil ASUW;

Student s1, s2;
StudentCouncil ASUW;

name

gpa

"Alanis"

3.86

s1

name

gpa

"Loreena"

3.27

s2

name

gpa

"Phil"

3.97

m_o_p

name

gpa

"Jane"

1.80

president

ASUW

7/8/98 CSE 143 Summer 1998 104

Operations on instances

◆ Most built-in operations DO NOT apply to class
instances (yet)

◆ You cannot (for example)
◆ use the "+" to add two Student instances

◆ use the "==" to compare two instances for equality

◆ To the client, the only valid operations on
instances are
◆ assignment ("="), selection ("."), parameter passing,

etc.

◆ Operations defined in the public interface of the class
7/8/98 CSE 143 Summer 1998 105

◆ Think of a class as a cookie cutter, used to
stamp out concrete objects (instances)

◆ Think of objects as simple creatures that we
communicate with via “messages.”

Terminology

Student s;
s.giveBonus(0.4)

Student s;
s.giveBonus(0.4)

instance

receiver

selection
message

argument

CSE 143 3

7/8/98 CSE 143 Summer 1998 106

Information Hiding

◆ The private access modifier supports and
enforces information hiding (at compile time)

// A sample client program

…
Student test;

test.gpa = 4.0;
cout << test.gpa;

test.init("Jean Chretien");
test.giveBonus(2.5);
cout << test.getGPA();
…

// A sample client program

…
Student test;

test.gpa = 4.0;
cout << test.gpa;

test.init("Jean Chretien");
test.giveBonus(2.5);
cout << test.getGPA();
…

7/8/98 CSE 143 Summer 1998 107

Classes and Modules

◆ Typically put each ADT in its own module (file)
◆ One .h file for interface
◆ One .cpp file for implementation

◆ Can put multiple classes in one module
◆ Why might one want to do this?

◆ In C++, must list private data and functions in
the class definition, which goes in .h file
◆ Why is this unfortunate?

7/8/98 CSE 143 Summer 1998 108

Building the Class: Specification

// Student.h -- The Student ADT

#ifndef __STUDENT_H__
#define __STUDENT_H__
const int MAX_STUDENT_NAME = 65;

class Student
{
public:

void init(char name[]);
void giveBonus(double amount);
double getGPA();

private:
char name[MAX_STUDENT_NAME];
double gpa;

};

#endif // __STUDENT_H__

// Student.h -- The Student ADT

#ifndef __STUDENT_H__
#define __STUDENT_H__
const int MAX_STUDENT_NAME = 65;

class Student
{
public:

void init(char name[]);
void giveBonus(double amount);
double getGPA();

private:
char name[MAX_STUDENT_NAME];
double gpa;

};

#endif // __STUDENT_H__
Student.h

7/8/98 CSE 143 Summer 1998 109

#include "Student.h"

void Student::init(char str[])
{

strcpy(name, str);
gpa = 4.0;

}

void Student::giveBonus(double amount)
{

gpa += amount;
}

double Student::getGPA()
{

return gpa;
}

#include "Student.h"

void Student::init(char str[])
{

strcpy(name, str);
gpa = 4.0;

}

void Student::giveBonus(double amount)
{

gpa += amount;
}

double Student::getGPA()
{

return gpa;
}

Building the Class:
Implementation

Student.cpp

scope resolution
operator

class name here

7/8/98 CSE 143 Summer 1998 110

Class Scope: Implementation

◆ Implementations of member functions use
Classname:: prefix to indicate which class

◆ "::" is the scope resolution operator
◆ Within member function body:

◆◆ Implicit reference to receiverImplicit reference to receiver
◆ Refer to members directly

◆ Don’t use class member names for formal
parameters and local variables

◆ private members visible to public members, but
not clients

7/8/98 CSE 143 Summer 1998 111

Summary (I)

◆ A data abstraction is an abstraction of a set of
values with similar properties, and the behaviour
of those values

◆ An abstract data type is a data abstraction
which acts like a type

◆ Types vs. instances

CSE 143 4

7/8/98 CSE 143 Summer 1998 112

Summary (II)

◆ C++’s class construct is a mechanism for
building ADTs
◆ Data members (representation, state)

◆ Function members (operations, behaviour)

◆ public vs. private members
◆ Member scope
◆ Assignment, parameter passing
◆ Classes vs. modules

