Canonical Form
[Section 7.8]

8/3/98 CSE 143 Summer 1998 264

Introduction

I canoni cal | <<k@nQui k(@1>> adj. & n

adj
2. authoritative, standard, accepted

[J C++ is a huge language
[J There are many ways to solve a given problem
[] Some techniques are better than others
Some become the "right" way
Some become expected, almost required
[J Canonical techniques allow us to think less!

8/3/98 CSE 143 Summer 1998 265

Operations on (Almost) All Types

[J For any type T, you [T some_t
should be able to: /
| void foo() {
Declare an instance of Ttemp_t;
Have aninstanceof Tgo _ J, ~

out of scope

Assign one instance of Tto__—]

another void bar(T param)
{

. T another_t = some_t;

Pass an instance of T to a
function)
bar(another_t);

8/3/98 CSE 143 Summer 1998 266

Default Operations

[J C++ generates defaults for all of these
operations if not given explicitly
[These defaults are not always what you want!

Especially with data structures that use dynamic
memory

8/3/98 CSE 143 Summer 1998 267

Declaring an Instance

[J Recall
The default declaration invokes the default
constructor
If class contains no constructors, a default
constructor is generated automatically

- Call default constructor on all members (recursion!)

[J Not every class needs a default constructor
But if one is needed, it should probably be written
explicitly

- E.g, I nt St ack should initialize its pointer member

8/3/98 CSE 143 Summer 1998 268

Going Out Of Scope

[J What happens every time Class IntStack
you call bl ah() ? public:
IntStack();

void push(int item);
private:

IntStackNode *ptop;
b3
void blah()
{

IntStack stack;

stack.push(14);
stack.push(-99);

}

8/3/98 CSE 143 Summer 1998 269

Destructors

[J The opposite of a constructor

Gets called whenever an instance is destroyed
- When an automatic variable goes out of scope
- When a dynamic object is del et ed

Used to clean up any resources associated with that
object
. del et e any dynamic memory allocated by the object
[JIf no explicit destructor supplied, compiler
generates a default one
Call destructors of all members

8/3/98 CSE 143 Summer 1998 270

Using Destructors
(LT T
[J Destructor is (almost) never called explicitly

[J Called whenever automatic instance goes out of
scope

void bl ah()

IntSack stack;
stack. push(14);
/1 implicit call to IntStack's destructor

[J Called whenever dynamic instance is del et ed

IntStack *pstack = new IntStack;
pstack->push(19), pstack->push(175);
delete pstack; // Implicit call to IntStack's destructor

8/3/98 CSE 143 Summer 1998 2711

Writing Destructors

[J Similar to constructor class IntStack
Name is ~ followed by public:
IntStack();
class name ~Intstack();
Not allowed to take any
arguments private:
No declared return type, IntsStackNode *ptop;
not even voi d ¥
[J Usually a good idea to intsStack:~Intstack0
. e {
provide an explicit denlg:
destructor
Extremely important for
dynamic data structures
8/3/98 CSE 143 Summer 1998 272

Assigning Instances

[J If no explicit assignment int main(void)
f] (
operator given, one is IniStack st:
generated automatically IntStack s2;
Assign each data member sLpush(10);

.push 3
[J What happens here? Stpuen(z0)

s2 =sl

cout << s2.pop() << endl;
cout << s1.pop() << endl;

8/3/98 CSE 143 Summer 1998 273

Shallow vs. Deep Copy

[] Default assignment operator is a shallow copy
Just copy over every data member

But pointers are copied across without copying the
actual dynamic data

This leads to sharing, which is probably not what you
want
[J For most dynamic data structures, want a deep
copy
Copy complete set of dynamically allocated data
So overload the assignment operator!

8/3/98 CSE 143 Summer 1998 274

Writing Assignment Operators

IntStack& IntStack::operator =(const IntStack& other)
{

ptop = NULL;
pushAllFrom(other.ptop);

[J The const here means that we promise not to
modify ot her while making the copy

[Assignment operator returns a | nt St ack& So
that it can support chained assignment

IntStack s1, s2, s3;
sl.push(10);
s2=s3=sl; /I Equivalent to s3 = s1; s2 = s3;

8/3/98 CSE 143 Summer 1998 275

Another Assignment Problem

i
. int main(void) {
[J Remember that the instance IntStack si;
being assigned to might fntstack sz
already contain dynamic data! s1.push(10);
) sl.push(20);
[Assignment operator usually s 33:2} igo)}
does something destructor-
. . 2 = sl
like before copying y T

IntStack& IntStack::operator =(const IntStack& other)
{

del ALL();
ptop = NULL;
pushAl | Fron(ot her . ptop);

[There’s still one last problem!
8/3/98 CSE 143 Summer 1998 276

Passing Parameters

[J When passing an voi d popOne(I nt Stack stack)
|nstanc<_3 asa parameter, { cout << stack. pop() << end!;
somethlng assignment- }
like happens int main(void)

{
IntStack si;
sl.push(10);
sl.push(20);
popOne(sl);
cout << sl.pop() << endl;

}

8/3/98 CSE 143 Summer 1998 277

How It Works

[J A parameter is initialized with a const reference
to the passed-in object

{1 poronelinSiack stack) ~J_ | stack is initialized with a
, cout << stack pop() << end; const reference to s1
IntStack s1; /

popone(sl);

[J So there’s an implicit call to a copy constructor

‘ IntStack:: IntStack(const IntStack& other); .

8/3/98 CSE 143 Summer 1998 278

The Copy Constructor

[J Once again, if no

icr class IntStack
explicit copy :
constructor is given, | public:
a defaultis IntStack(const IntStack& other);
generated -

automatically
Default is shallow

IntStack:: IntStack(const IntStack& other)

Avoiding Memory Bloat

[Deep copies make heavier use of memory

[J So try to avoid creating copies!
| Use references (or pointers) when possible

void printTop(IntStack stack) void printTop(IntStacké& stack)
{ {

cout << stack.top() << endi; > coues stack.top() << end;
}

8/3/98 CSE 143 Summer 1998 280

. ptop = NULL;
copy: call copy pushAllFrom(other.ptop);
constructor on each |}
member
Want deep copy
8/3/98 CSE 143 Summer 1998 279

[J C++is a complicated language
[J Many conventions exist to make programming easier

[Use canonical form for data structures involving dynamic
data (if you have any three, write the fourth!)

class T

public:
T0: /I Default constructor
T(const T&); /I Copy constructor
~T0; /I Destructor

T& operator =(const T& other); // Assignment operator

8/3/98 CSE 143 Summer 1998 281

