CSE143 Section #15 Problems

For the following problems, assume that you are using a binary tree of ints

defined as follows:

public class IntTreeNode ({

public int data; // data stored at this node
public IntTreeNode left; // reference to left subtree
public IntTreeNode right; // reference to right subtree

// post: constructs a leaf node with given data

public IntTreeNode (int data) {
this(data, null, null);
}

// post: constructs a branch node with the given data and links
public IntTreeNode (int data, IntTreeNode left, IntTreeNode right) {

this.data = data;
this.left = left;
this.right = right;

}

public class IntTree {
private IntTreeNode overallRoot;

<methods>

For each problem below, you are to write a new public method for the IntTree
class that performs the given operation. You may define additional private

methods to implement your public methods.

1. Write a method numNodes that returns the total number of nodes in the tree.

2. Write a method numLeaves that returns the total number of leaf nodes in the

tree.

3. Write a method equals that compares two binary trees of integers to see if
they are equal to each other (i.e., if they have the same structure and

store the same values). For example, if variables of
and t2 have been initialized, then tl.equals(t2) will
trees are equal and will return false otherwise. Two
equal if each node in either tree has a corresponding
in the same location relative to the root and storing
both trees are empty, they are considered equal.

type IntTree called tl
return true if the
trees are considered
node in the other tree
the same value. If

4.

7.

Write a method depthSum that returns the sum of the values stored in a
binary tree of integers weighted by the depth of each value. Return the
value at the root plus 2 times the values stored at the next level of the
tree plus 3 times the values stored at the next level of the tree plus 4

times the values stored at the next level of the tree and so on.

For example,

in the tree below:

+-——+
[9 |
+-——+
/
/ \
+-——+ +-——+
l7 | 6 |
+-——+ +-——+
/ \ \
/ \ \
+-——+ +-——+ +-——+
[3 | [2 | | 4 |
+--—+ +-—-—+ +--—+
/ \
/ \
+-——+ +-——+
I 5 | |2
+--—+ +-—-—+
The sum would be computed as:
1 *9 +2* (7+6) +3* (3 +2+4) +4=*(5+2) =290

Write a method height that returns the height of a binary tree. The height

of a tree is defined to be the number of levels it has (i.e., the number of

nodes along the longest path from the root to a leaf). The empty tree has a
height of 0. A tree of one node has a height of 1. A root node with one or
two leaves as children has a height of 2. And so on.

Write a method isFull that returns whether or not a binary tree is full

(true if it is, false otherwise).
node has 0 or 2 children.

A full binary tree is one in which every
Below are examples of each.

full tree not a full tree
+-——+ +———+
| 2 | I 7 |
+———+ +———+
/ \ / \
/ \ / \
+———+ +-——+ +-——+ +-——+
| 3 | | 1 | | 4 | | 0 |
+———+ +———+ +———+ +———+
/ \ / \ \
/ \ / \ \
+———+ +———+ +———+ +———+ +———+
| 8 | [7 | I 9 | | 2 | | 8 |
+-——+ +-——+ +———+ +-——+ +———+

By definition, the empty tree is considered full.
Write a method contains that takes an integer n as a
returns true if the tree contains the value and that
otherwise.

parameter and that
returns false

8.

Write a method printLevel that takes an integer n as a parameter and that

prints the values at level n from left to right.
We will use the convention that the
that it's children are at level 2,
if a variable t stores a reference to the following tree:

printed to System.out, one per 1
overall root is at level 1,
For example,

ine.

The values should be

and so on.

Fo———t
I 12 |
to———+
/ \
/ \
to———+ Fo———t
| 19 | | 93 |

to———+ to———+

/ \ \

/ \ \
to———t to———+ Fo———+
[11 | | 14 | | 15 |
to———+ +-———+ to———+

/
/
to———t
| 10 |
to———+

then the call:

t.printLevel (3);
would produce the output:

11

14

15
If there are no values at the level, your method should produce no output.
Your method should throw an IllegalArgumentException if passed a value for
level that is less than 1.

Write a method called hasPathSum that takes an integer n as a parameter and
that returns true if there is some path from the overall root of a tree to a
node of the tree in which the sum of the data stored in the nodes adds up to
n (returning false if no such path exists). For example if the variable t
refers to the following tree:

to-——+
I 5 |
ot
/ \
/ \
-+ o=+
1| | 21 |

ot ot

/ \ \

/ \ \
to-——+ to-——+ -+
I =9 | 2 | | 20 |
to-——+ to———1 +o———+

/ \ / \

/ \ / \
o=+ to-——+ -+ -+
I3 | 30 | | 13 | I 4 |
to-——1 +o-——1 +o———+ +o———+

Below are various calls and an explanation for the value returned:

t.hasPathSum(8) returns true because of the path (5, 1, 2)
t.hasPathSum(26) returns true because of the path (5, 21)
t.hasPathSum(0) returns true because of the path (5, 1, -9, 3)
t.hasPathSum(5) returns true because of the path (5)
t.hasPathSum(l) returns false because no path with that sum exists

