For this problem, assume that we are using the standard ListNode class:

```java
class ListNode {
    int data;       // data stored in this node
    ListNode next;  // link to next node in the list

    public ListNode() {
        this(0, null);
    }

    public ListNode(int data) {
        this(data, null);
    }

    public ListNode(int data, ListNode next) {
        this.data = data;
        this.next = next;
    }
}
```

Define a class called LinkedIntList that has the basic functionality as the simple ArrayIntList class that we wrote initially. In doing so, assume that you have a single data field of type ListNode called front:

```java
class LinkedIntList {
    private ListNode front;

    <methods>
}
```

We wrote the appending add method in lecture:

```java
public void add(int value) {
    if (front == null) {
        front = new ListNode(value);
    } else {
        ListNode current = front;
        while (current.next != null) {
            current = current.next;
        }
        current.next = new ListNode(value);
    }
}
```

Write each of the following methods. Assume all index values are legal.

- a zero-argument constructor
- size() that returns the current number of elements in the list
- get(index) that returns the value at the given index
- toString() that returns a comma-separated list in square brackets of the values in the list
- indexOf(value) that returns the index of the first occurrence of the given value or -1 if not found
- add(index, value) that inserts the given value at the given index
- remove(index) that removes the value at the given index