

 CSE143 Section #3 Problems

For all problems involving lists and sets, the contents will be displayed using

the standard square bracket notation used by toString, as in:

 [12, 4, 19, 78, 42]

List<E> Methods (10.1)

add(value) appends value at end of list

add(index, value) inserts given value at given index, shifting

 subsequent values right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found in list

 (-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting

 subsequent values left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

addAll(list) adds all elements from the given collection to the end

 of the list

contains(value) returns true if the given value is found somewhere in

 this list

remove(value) finds and removes the given value from this list

removeAll(list) removes any elements found in the given collection

 from this list

iterator() returns an object used to examine the contents of the

 list

Set<E> Methods (11.2)

add(value) adds the given value to the set

contains(value) returns true if the given value is found in the set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in the set

isEmpty() returns true if the set's size is 0

addAll(collection) adds all elements from the given collection to the set

containsAll(collection) returns true if set contains every element from

 given collection

removeAll(collection) removes any elements found in the given collection

 from this set

retainAll(collection) removes any elements not found in the given collection

 from this set

iterator() returns an object used to examine contents of the set

Iterator<E> Methods (11.1)

hasNext() returns true if there are more elements to be read from collection

next() reads and returns the next element from the collection

remove() removes the last element returned by next from the collection

1. Write a method called acronymFor that takes a list of strings as a parameter

 and that returns the corresponding acronym. You form an acronym by

 combining the capitalized first letter of a series of words. For example,

 the list [laughing, out, loud] produces the acronym "LOL". The list

 [Computer, Science and, Engineering] produces the acronym "CSE". You may

 assume that all of the strings are nonempty. Your method is not allowed to

 change the list passed to it as a parameter. If passed an empty list, your

 method should return the empty string. You may construct iterators and

 strings, but you are not allowed to construct other structured objects.

2. Write a method called switchPairs that switches the order of values in a

 List of Strings in a pairwise fashion. Your method should switch the order

 of the first two values, then switch the order of the next two, switch the

 order of the next two, and so on. For example, if a list stores:

 [four, score, and, seven, years, ago]

 your method should switch the first pair (four, score), the second pair

 (and, seven) and the third pair (years, ago), to yield this list:

 [score, four, seven, and, ago, years]

 If there are an odd number of values in the list, the final element is not

 moved. For example, if the original list had been:

 [to, be, or, not, to, be, hamlet]

 It would again switch pairs of values, but the final value (hamlet) would

 not be moved, yielding this list:

 [be, to, not, or, be, to, hamlet]

3. Write a method stutter that doubles the size of the list by replacing every

 integer in the list with two of that integer. For example, if the list

 stores the following sequence of integers when the method is called:

 [1, 8, 19, 4, 17]

 It should store the following sequence of integers after stutter is called:

 [1, 1, 8, 8, 19, 19, 4, 4, 17, 17]

4. Write a method called reverse3 that takes a List of integer values as a

 parameter and that reverses each successive sequence of three values in the

 list. For example, suppose that a variable called list stores the following

 sequence of values:

 [3, 8, 19, 42, 7, 26, 19, -8, 193, 204, 6, -4]

 and we make the following call:

 reverse3(list);

 Afterwards the list should store the following sequence of values:

 [19, 8, 3, 26, 7, 42, 193, -8, 19, -4, 6, 204]

 The first sequence of three values (3, 8, 19) has been reversed to be (19,

 8, 3). The second sequence of three values (42, 7, 26) has been reversed to

 be (26, 7, 42). And so on. If the list has extra values that are not part

 of a sequence of three, those values are unchanged. For example, if the

 list had instead stored:

 [3, 8, 19, 42, 7, 26, 19, -8, 193, 204, 6, -4, 99, 2]

 The result would have been:

 [19, 8, 3, 26, 7, 42, 193, -8, 19, -4, 6, 204, 99, 2]

 Notice that the values (99, 2) are unchanged in position because they were

 not part of a sequence of three values.

5. Write a method hasOdd that takes a set of integers as a parameter and that

 returns true if the set contains at least one odd integer, false otherwise.

6. Write a method removeEvens that takes a set of integers as a parameter and

 that removes the even values from the set, returning those values as a new

 set. The new set should be ordered in increasing numerical order. For

 example, if a set s1 contains these values:

 [0, 17, 16, 7, 10, 12, 13, 14]

 and we make the following call:

 Set<Integer> s2 = removeEvens(s1);

 Then after the call s1 and s2 would contain the following values:

 s1: [17, 7, 13]

 s2: [0, 10, 12, 14, 16]

7. Write a method containsAll that takes two sets of integers as parameters and

 that returns true if the first set contains all of the values of the second

 set and that returns false otherwise. For example, if the two sets are:

 s1: [17, 16, 7, 10, 12, 13, 14]

 s2: [7, 12, 13]

 then the call containsAll(s1, s2) would return true while the call

 containsAll(s2, s1) would return false. You are implementing a two-argument

 alternative to the standard Set method called containsAll, so you are not

 allowed to call that method to solve this problem. You are also not allowed

 to construct any structured objects to solve the problem (no set, list,

 stack, queue, string, etc). Your method should not change either set passed

 as a parameter.

8. Write a method called equals that takes two sets of integers as parameters

 and that returns true if the sets are equal. Two sets are considered equal

 if they store the same values. For example, given sets: s1: [5, 3, 1, 0]

 s2: [0, 1, 5, 3] s3: [1, 0, 5, 3, 4] The call equals(s1, s2) would return

 true while the calls equals(s1, s3) and equals(s2, s3) would return false.

 As in the examples above, you can not assume that the set values are

 ordered.

 You are implementing a two-argument alternative to the standard Set method

 called equals, so you are not allowed to call that method or the containsAll

 method to solve this problem. You may construct iterator objects, but you

 are also not allowed to construct any structured objects to solve the

 problem (no set, list, stack, queue, string, etc). Your method should not

 change either of the sets passed as parameters.

9. Write a method called retainAll that takes two sets of integers as

 parameters and that removes any values in the first set that are not found

 in the second set. For example, given sets:

 s1: [0, 19, 8, 9, 12, 13, 14, 15]

 s2: [0, 19, 2, 4, 5, 9, 10, 11]

 If the following call is made:

 retainAll(s1, s2);

 after the call, the sets would store the following values:

 s1: [0, 19, 9]

 s2: [0, 19, 2, 4, 5, 9, 10, 11]

 You are implementing a two-argument alternative to the standard Set method

 called retainAll, so you are not allowed to call that method to solve this

 problem. You are also not allowed to construct any structured objects to

 solve the problem (no set, list, stack, queue, string, etc) although you can

 construct iterators. Your method should not change the second set passed

 as a parameter.

