

 CSE143 Section #1 Problems

We ended the first lecture with the following version of ArrayIntList:

 public class ArrayIntList {

 private int[] elementData; // list of integers

 private int size; // current number of elements in the list

 // constructs a list with a capacity of 100

 public ArrayIntList() {

 elementData = new int[100];

 size = 0;

 }

 // returns a comma-separated, bracketed version of the list

 public String toString() {

 if (size == 0) {

 return "[]";

 } else {

 String result = "[" + elementData[0];

 for (int i = 1; i < size; i++) {

 result += ", " + elementData[i];

 }

 result += "]";

 return result;

 }

 }

 // appends the given value to the end of the list

 public void add(int value) {

 elementData[size] = value;

 size++;

 }

 }

1. Array simulation. You are to simulate the execution of a method that

 manipulates an array of integers. Consider the following method:

 public static void mystery(int[] list) {

 for (int i = 1; i < list.length; i++) {

 list[i] = list[i] + list[i - 1];

 }

 }

 In the left-hand column below are specific lists of integers. You are to

 indicate in the right-hand column what values would be stored in the list

 after method mystery executes if the integer list in the left-hand column

 is passed as a parameter to mystery.

 Original List Final List

 --

 {8} ____________________________

 {6, 3} ____________________________

 {2, 4, 6} ____________________________

 {1, 2, 3, 4} ____________________________

 {7, 3, 2, 0, 5} ____________________________

2. Write a new method for the ArrayIntList class called indexOf that returns

 the index of a particular value in the list. The method should return the

 index of the first occurrence of the target value in the list. If the value

 is not in the list, it should return -1. For example, if a variable called

 list stores the following values:

 [42, 7, -9, 14, 8, 39, 42, 8, 19, 0]

 then the call list.indexOf(8) should return 4 because the index of the first

 occurrence of the value 8 in the list is at index 4. Notice that we are

 using 0-based indexing. The call list.indexOf(2) should return -1 because

 the value 2 is not in the list.

3. Write a new method for the ArrayIntList class called stutter that doubles

 the size of the list by replacing every integer in the list with two of that

 integer. For example, if a variable called list stores the following:

 [1, 8, 19, 4, 17]

 and we make the following call:

 list.stutter();

 then it should store the following sequence of integers after the call:

 [1, 1, 8, 8, 19, 19, 4, 4, 17, 17]

4. Write a new method for the ArrayIntList class called remove that takes an

 integer index and that removes the value at the given index, shifting

 subsequent values to the left. For example, if a variable called list

 stores the following values:

 [3, 19, 42, 7, -3, 4]

 and we make the following call:

 list.remove(1);

 then it should store the following sequence of integers after the call:

 [3, 42, 7, -3, 4]

5. Write a new method for the ArrayIntList class called add that takes an

 integer index and a value to add and that inserts the given value at the

 given index, shifting subsequent values to the right. For example, if a

 variable called list stores the following values:

 [3, 19, 42, 7, -3, 4]

 and we make the following call:

 list.add(2, 17);

 then it should store the following sequence of integers after the call:

 [3, 19, 17, 42, 7, -3, 4]

