
Lecture 21:
Hashing
08/12/22

Upcoming

• Checkpoint 8 due Sunday 8/14 @ 11:59pm
• A6 Resubmission due Tuesday 8/16 @ 11:59pm
• A8 due Tuesday 8/16 @ 11:59pm
• Cannot be resubmitted!
• Late days allowed, but the last day of IPL is Wednesday, 8/17

Runtime Efficiency of contains

• Array, ArrayList, LinkedList:

• TreeSet:

• HashSet:

Runtime Efficiency of contains

• Array, ArrayList, LinkedList: O(N)

• TreeSet: O(log N)

• HashSet: O(1)

Arrays

• Random access: we can jump straight to any index in an array

index 0 1 2 3 4 5 6 7 8 9

value 0 11 5 -1 24 2 3 7 0 49

Really Big Array – my idea J

• Store Set of student ids: 0 – 9,999,999
• add(id)
• contains(id)

index 0 1 2 3 4 5 6 7 …

value

9,999,999

Hashing

• hash: To map a value to an integer index.
• hash table: An array that stores elements via hashing.

• hash function: A function that maps values to indexes.

Hashing Example

• Hash function: h(x) = x % 10
• Add: 3, 16, 24, 300
• Contains: 16, 27

index 0 1 2 3 4 5 6 7 8 9

value

Bad Hash Functions (why?)

• h(x) = 1

• h(x) = rand.nextInt()

Bad Hash Functions (why?)

• h(x) = 1
Everything hashes to the same index – lots of collisions!

• h(x) = rand.nextInt()
Not consistent – we can’t find our elements after we put them in our
set!

Good Hash Functions

• Maps a value to a number
• passing in the same value should always give the same result

• Results from a hash function should be distributed over a range
• very bad if everything hashes to 1!
• should "look random"

• Should be “fast”

Hashing Objects

• Object class – superclass of everything
• public String toString()
• public int hashCode()
• This is a built-in hash function!

Hashing Strings

• How would we write a hash function for String objects?

String's hashCode

• The hashCode function inside String objects looks like this:
public int hashCode() {

int hash = 0;
for (int i = 0; i < this.length(); i++) {

hash = 31 * hash + this.charAt(i);
}
return hash;

}

• As with any general hashing function, collisions are possible.
• Example: "Ea" and "FB" have the same hash value.

Let’s implement our own HashSet!

Collisions

• collision: When hash function maps 2 values to same index.

Example: h(x) = x % 10
set.add(24);
set.add(7);
set.add(54);

index 0 1 2 3 4 5 6 7 8 9

value

Separate Chaining

• chaining: Resolving collisions by storing a list at each index.
• add/contains/remove must traverse lists, but the lists are short

index 0 1 2 3 4 5 6 7 8 9

value

24

54 711

31

Practical points

• Use known hash functions – don’t reinvent the wheel!
• When you override hashCode() you must always override
equals() as well! (and vice versa)
• Use prime numbers for table sizes
• Rehash when the hash table gets too crowded

Rehashing

• rehash: Growing to a larger array when the table is too full.
• Cannot simply copy the old array to a new one. (Why not?)

• load factor: ratio of (# of elements) / (hash table length)
• many collections rehash when load factor ≅ .75
• can use big prime numbers as hash table sizes to reduce collisions

