
Lecture 18: 
Comparable
08/05/22



Upcoming

• Checkpoint 7 due Sunday 8/7 @ 11:59pm
• A5 Resubmission due Wednesday 8/10 @ 11:5pm
• A7 due Thursday 8/11 @ 11:59pm

• (A8 will be released Monday 8/8, due Tuesday 8/16)

• Regrade requests due today!



Collections class
Method name Description

binarySearch(list, value) returns the index of the given value in a sorted list (< 0 if 
not found)

copy(listTo, listFrom) copies listFrom's elements to listTo
emptyList(), emptyMap(), emptySet() returns a read-only collection of the given type that has no 

elements
fill(list, value) sets every element in the list to have the given value

max(collection), min(collection) returns largest/smallest element

replaceAll(list, old, new) replaces an element value with another
reverse(list) reverses the order of a list's elements
shuffle(list) arranges elements into a random order
sort(list) arranges elements into ascending order



compareTo

• The standard way for a Java class to define a comparison function 
for its objects is to define a compareTo method.

• Example: in the String class, there is a method:
public int compareTo(String other)

A negative number
(value < 0)

(if A < B)
if A comes before B in the ordering

Zero 
(value == 0)

(if A = B)
if A and B are tied (order doesn’t matter)

A positive number 
(value > 0)

(if A > B)
if A comes after B in the ordering

A.compareTo(B)
will return:



Comparable interface

public interface Comparable<E> {
public int compareTo(E other);

}

• A class can implement the Comparable interface to define a 
natural ordering function for its objects.


