
Lecture 12:
Binary Search;
Complexity
07/20/22

Reminders

• A2 Resubmission due Wednesday 7/20 @ 11:59pm
• Checkpoint 5 due Sunday 7/24 @ 11:59 pm

Midterm on Friday

• We give lots of partial credit! Write down everything you know.
• No credit for pseudocode or comments – only for real code
• Your code doesn’t have to be complete to earn credit

• If you know you need a while loop, but don’t exactly know what the condition is, write
down the while loop anyway

• etc.

• Manage your time well.
• Move on to the next question if you feel like you’re stuck

• Don’t write before or after time is called – nothing you write is
worth -10 points

Midterm on Friday

• Bring your Husky ID

• We will start at 10:50 sharp to give you the full 60 minutes.
• Arrive early!

• Make sure you sleep!

Complexity / Efficiency

• Finally!
• Best of CS

Sum up numbers 1 to n
• Let’s write a method to calculate the sum from 1 to some n:
public static int sum1(int n) {

int sum = 0;
for (int i = 1; i <= n; i++) {

sum += i;
}
return sum;

}

• Gauss also has a way of solving this:
public static int sum2(int n) {

return n * (n + 1) / 2;
}

Which one is more efficient?

Efficiency

• Efficiency: measure of computing resources used by code.
• Resources:

• Time
• Space
• Energy
• …

• Most commonly refers to time

• We want to be able to compare different algorithms to see which is
more efficient

Runtime Efficiency Try 1

• Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms
n = 10,000,000 sum1 took 8ms, sum2 took 0ms
n = 100,000,000 sum1 took 43ms, sum2 took 0ms
n = 2,147,483,647 sum1 took 804ms, sum2 took 0ms

Runtime Efficiency Try 1

• Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 0ms, sum2 took 0ms
n = 10,000,000 sum1 took 10ms, sum2 took 0ms
n = 100,000,000 sum1 took 47ms, sum2 took 0ms
n = 2,147,483,647 sum1 took 784ms, sum2 took 0ms

Runtime Efficiency Try 1

• Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms
n = 10,000,000 sum1 took 3ms, sum2 took 0ms
n = 100,000,000 sum1 took 121ms, sum2 took 0ms
n = 2,147,483,647 sum1 took 1750ms, sum2 took 0ms

• Different computers give
different results

• The same computer gives
different results!!! D:<

Runtime Efficiency Try 2

• Count number of “simple steps” our algorithm takes to run
• Assume the following:
• Statement: any single statement 1 step to run

• int x = 5;
• boolean b = (5 + 1 * 2) < 15 + 3;
• System.out.println(“Hello”);

• Loop: number of times the loop runs * the steps in the body

• Method call: total number of steps inside the method's body

Efficiency Example
public static void method1(int N) {

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
statement4;

}

for (int i = 1; i <= N; i++) {
statement5;
statement6;
statement7;

}
}

pollev.com/cse143

How many “steps” are in this method?
public static void method2(int N) {

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {
statement2;
statement3;
statement4;
statement5;

}
}

Sum: how many steps in each?

public static int sum1(int n) {
int sum = 0;
for (int i = 1; i <= n; i++) {

sum += i;
}
return sum;

}

public static int sum2(int n) {
return n * (n + 1) / 2;

}

sum1 vs. sum2

Big-O

We report runtime efficiency in terms of the general growth rate of
an algorithm.
• N: size of the input data
• Growth rate: change in runtime as N changes.

Big-O is our notation for reporting this growth rate!
• We only care about the general growth rate
• We do not care about specific scaling factors

Big-O

Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.
• Example:
• N = 1 trillion = 1,000,000,000,000
• N3 = 1 undecillion = 1,000,000,000,000,000,000,000,000,000,000,000,000

• The constants and lower-order terms don’t matter! The highest-order
term (N3) dominates the overall runtime.
• We say that this algorithm runs "on the order of" N3.
• or O(N3) for short ("Big-Oh of N cubed")

Big-O

Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.
• Example:
• N = 1 trillion = 1,000,000,000,000
• N3 = 1 undecillion = 1,000,000,000,000,000,000,000,000,000,000,000,000

• The constants and lower-order terms don’t matter! The highest-order
term (N3) dominates the overall runtime.
• We say that this algorithm runs "on the order of" N3.
• or O(N3) for short ("Big-Oh of N cubed")

Sum: Big-O

public static int sum1(int n) {
int sum = 0;
for (int i = 1; i <= n; i++) {

sum += i;
}
return sum;

}

public static int sum2(int n) {
return n * (n + 1) / 2;

}

Sum: Big-O

// Original sum2 implementation
public static int sum2(int n) {

return n * (n + 1) / 2;
}

// Another sum2 implementation
public static int sum2(int n) {

int temp1 = n + 1;
int temp2 = n * temp1;
int temp3 = temp2 / 2;
return temp3;

}

pollev.com/cse143

What is the Big-O efficiency of this method?

public void method(int n) {
int value = 0;
for (int i = 0; i < 7; i++) {

for (int j = 0; j < n; j++) {
value += j;

}
}
return value + n / 2;

}

• O(1)
• O(n)
• O(7n)
• O(7n + 4)
• O(n2)
• O(n3)

Complexity Classes

Class Big-O If you double N…
constant O(1) unchanged
logarithmic O(log N) increases slightly
linear O(N) doubles
log linear O(N log N) slightly more than doubles
quadratic O(N2) quadruples
cubic O(N3) multiplies by 8
exponential O(2N) multiplies drastically

Complexity Comparison

N (input size) O(1) O(log N) O(N) O(N log N) O(N2) O(N3) O(2N)

100 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms
200 100 ms 115 ms 200 ms 240 ms 400 ms 800 ms 32.7 sec
400 100 ms 130 ms 400 ms 550 ms 1.6 sec 6.4 sec 12.4 days
800 100 ms 145 ms 800 ms 1.2 sec 6.4 sec 51.2 sec 36.5 million years

1600 100 ms 160 ms 1.6 sec 2.7 sec 25.6 sec 6 min 49.6
sec 42.1 * 1024 years

3200 100 ms 175 ms 3.2 sec 6 sec 1 min 42.4
sec

54 min 36
sec 5.6 * 1061 years

Visual Complexity Comparison

Sequential Search

• Remember writing indexOf in ArrayIntList?
• Sequential search: start at the beginning, examine each element

until you find what you want (or reach the end)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Sequential Search

• What is its complexity class (Big-O)?

public int indexOf(int value) {
for (int i = 0; i < size; i++) {

if (elementData[i] == value) {
return i;

}
}
return -1; // not found

}

What if the array was sorted?

• How could we perform a faster search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Binary Search

• Algorithm: Examine the middle element of the array.
• If it is too big, eliminate the right half of the array and repeat.
• If it is too small, eliminate the left half of the array and repeat.
• Else it is the value we're searching for, so stop.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Binary Search Time Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
• N, N/2, N/4, N/8, ..., 4, 2, 1
• How many divisions does it take?

• Think of it from the other direction: How many times do I have to
multiply by 2 to reach N?
• 1, 2, 4, 8, ..., N/4, N/2, N
• Call this number x

Time Complexity of Collections

contains(value)
• ArrayList: O(N)
• LinkedList: O(N)
• TreeSet: O(log N)
• HashSet: O(1)

countUnique – Using a List

public static int countUnique(Scanner input) {
List<String> list = new ArrayList<>();
while (input.hasNext()) {

String word = input.next();
if (!list.contains(word)) {

list.add(word);
}

}
return list.size();

}

What is the time complexity of this code?

countUnique – Using a Set

public static int countUnique(Scanner input) {
Set<String> set = new HashSet<>();
while (input.hasNext()) {

String word = input.next();

set.add(word);
}
return set.size();

}

What is the time complexity of this code?

