
Lecture 10: 
Sets and 
Maps
07/15/22



Midterm Information

• Friday, July 22: Midterm Exam, 10:50 - 11:50, GUG 220

• Midterm resources posted on the course website
• Left–handed seat request due EOD today! (see pinned post on Ed)



Midterm Content

1. Recursive Tracing
2. Recursive Programming
3. Collections Programming (lists, sets, maps)
4. Linked List Nodes (before / after pictures)
5. ArrayIntList
6. Stacks and Queues



Exam Logistics

• Carefully read through the exam rules and info on the course 
website
• Closed book, closed note
• Cheat sheet of useful methods provided

• Assigned seating
• Will be posted next week

• Bring your Husky ID and a pencil/eraser

If you are sick, please stay home! Email Taylor before the exam 
begins.



Exam Tips

• We give lots of partial credit! Write down everything you know.
• Method header, throwing an exception, return value

• Style generally does not matter
• Use interfaces, generics correctly
• Forbidden features are still forbidden on the exam

• Stacks and Queues: peek() method is not allowed
• Use proper Java syntax



Practice!!

This exam is not about memorizing – practice to improve!

Many, many resources to practice on your own
• Practice exams
• Exam question database
• Section problems
• IPL, Ed message board

Structured practice opportunities
• Optional review session - Monday 7/18 @ 1:10pm in GUG 220 (here)
• Midterm review in section - Thursday 7/21



Taking a short break from recursion…

• Back to collections!
• So far, we know about: Lists, Stacks, Queues

• Today:
• Sets
• Maps



countUnique

• Write a program that counts the number of unique words in a large 
text file (ex, Moby Dick).



Set ADT

• set: A collection of unique values (no duplicates allowed)
• add, remove, contains
• no indices

set

"the"
"of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("to") true



Set Interface in Java

add(value) adds the given value to the set
contains(value) returns true if the given value is found in this set
remove(value) removes the given value from the set
clear() removes all elements of the set
size() returns the number of elements in list
isEmpty() returns true if the set's size is 0
toString() returns a string such as "[3, 42, -7, 15]"

Set<String> s1 = new TreeSet<>();
Set<Integer> s2 = new HashSet<>();



Set Implementations

• Set is implemented by TreeSet and HashSet classes
• TreeSet: elements are stored in sorted order

• pretty fast: O(log N) for all operations

• HashSet: elements are stored in unpredictable order
• very fast: O(1) for all operations

Note: This O(something) notation won’t be covered until next week. It’s okay not to know 
what it means yet.



countWords

• Write a program to count the number of occurrences of each 
unique word in a large text file.
• Print out each unique word in alphabetical order along with its 

number of occurrences.

What collection is appropriate for this problem?



Map ADT

• map: Holds a set of key-value pairs, where each key is unique
• a.k.a. "dictionary”

• basic map operations:
• put(key, value ): Adds a 

mapping from a key to
a value.
• get(key ): Retrieves the

value mapped to the key.
• remove(key ): Removes

the given key and its
mapped value.

map.get("the")

56

set

key value

"the" 56

key value

"why" 14

key value

"you" 22

key value

"me" 31

key value

"in" 37

key value

"at" 43



Map Interface in Java
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one
get(key) returns the value mapped to the given key (null if not found)
containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key
clear() removes all key/value pairs from the map
size() returns the number of key/value pairs in the map
isEmpty() returns true if the map's size is 0
toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map
values() returns a collection of all values in the map
putAll(map) adds all key/value pairs from the given map to this map
equals(map) returns true if given map has the same mappings as this one



Map Implementations

• Map is implemented by TreeMap and HashMap classes
• TreeMap: keys are stored in sorted order

• pretty fast: O(log N) for all operations

• HashMap: keys are stored in unpredictable order
• very fast: O(1) for all operations

• A map requires 2 type params: one for keys, one for values.

// maps from String keys to Integer values
Map<String, Integer> map = new HashMap<String, Integer>();


