
Lecture 9:
Recursive
Programming
07/13/22

Announcements

• A1 resubmission due Wednesday, July 13th @ 11:59pm
• Tonight!

• A3 due Thursday, July 14th @ 11:59pm

Recursion and cases

Every recursive algorithm involves at least 2 cases:
• base case: the simplest case
• recursive case: does a tiny bit of work, then breaks down the

problem into a smaller version of itself

Some recursive algorithms have more than one base or recursive
case, but all have at least one of each.

Roadmap for the week

• Monday
• Introduce idea of recursion
• Goal: Understand idea of recursion and read recursive code

• Tuesday
• Practice reading recursive code

• Wednesday
• More complex recursive examples
• Goal: Identify recursive structure in problem and write recursive code

• Thursday
• Practice writing recursive code

// post: returns an integer where every digit of n is
// replaced by two of that digit.
// Example: doubleUp(348) returns 334488
// Example: doubleUp(-348) returns -334488
public static int doubleUp(int n) {

if (n < 0) {
return -doubleUp(-n);

} else if (n < 10) {
return n * 11;

} else {
return 100 * doubleUp(n / 10) + doubleUp(n % 10);

}
}

Below is a trace of the call doubleUp(-348):
doubleUp(-348)

is < 0, so execute first branch
compute doubleUp(-n), which is doubleUp(348)
| not < 0, not < 10, so execute third branch
| compute doubleUp(34)
| | not < 0, not < 10, so execute third branch
| | compute doubleUp(3)
| | | not < 0, but is < 10, so execute second branch
| | | return n * 11 (33)
| | compute doubleUp(4)
| | | not < 0, but is < 10, so execute second branch
| | | return n * 11 (44)
| | return first * 100 + second (33 * 100 + 44 = 3344)
| compute doubleUp(8)
| | not < 0, but is < 10, so execute second branch
| | return n * 11 (88)
| return first * 100 + second (3344 * 100 + 88 = 334488)
return the negation of that result (-334488)

// post: returns a string where every character of str
// is replaced by two of that character
// Example: doubleUp("cat") returns "ccaatt"
// Example: doubleUp("") returns ""
public static String doubleUp(String str) {

if (str.length() <= 1) {
return str + str;

} else {
char c = str.charAt(0);
return "" + c + c + doubleUp(str.substring(1));

}
}

Recursive Data - File

• A file is one of:
• A simple file (image, text file, etc.)
• A directory containing files

• Directories can be nested to an
arbitrary depth

print method
• Write a method print accepts a File parameter and prints

information about that file.
• If the File object represents a normal file, just print its name.
• If the File object represents a directory, print its name and information about

every file/directory inside it, indented.

animals
cat_jump.png
dogs

cool_dogs.txt
happy_dog.jpeg

pandas
red_pandas

cat
cat_and_panda.jpeg

iloveredpandas.jpeg
rp_cubs.png

waving_panda.png

File objects
• A File object (from the java.io package) represents a file or

directory on the disk.
Constructor/method Description
File(String) creates File object representing file with given name
canRead() returns whether file is able to be read
delete() removes file from disk
exists() whether this file exists on disk
getName() returns file's name
isDirectory() returns whether this object represents a directory
length() returns number of bytes in file
listFiles() returns a File[] representing files in this directory
renameTo(File) changes name of file

