
Lecture 8: 
Recursion
07/11/22



Announcements

• Husky Card required for access to GUG starting today 
• Doors at the front of the room are open if you need another way in



Recursion!



Roadmap for the week

• Monday
• Introduce idea of recursion
• Goal: Understand idea of recursion and read recursive code

• Tuesday
• Practice reading recursive code

• Wednesday
• More complex recursive examples
• Goal: Identify recursive structure in problem and write recursive code

• Thursday
• Practice writing recursive code



Recursion

• recursion: A problem defined in terms of itself.
• Solving a problem using recursion depends on solving

smaller occurrences of the same problem.

• recursive programming: Writing methods that call themselves to 
solve problems recursively.
• An equally powerful substitute for iteration (loops)
• Particularly well-suited to solving certain types of problems



What row are you sitting in?



Getting down stairs

• Need to know two things:
• How to get down one step
• How to recognize the bottom

• Most code will look like this:
if (simplest case) {

compute and return solution

} else {

divide into similar subproblem(s)

solve each subproblem recursively

assemble the overall solution

}



Recursion and cases

Every recursive algorithm involves at least 2 cases:
• base case: the simplest case
• recursive case: does a tiny bit of work, then breaks down the 

problem into a smaller version of itself

Some recursive algorithms have more than one base or recursive 
case, but all have at least one of each.



pollev.com/cse143

What is the output 
of this code?


