Lecture 4:
Stacks and
Queues

06/29/22

Al: Letterlnventory

* Due Thursday 6/30 @ 11:59pm

* To be making satisfactory progress in the course, your homework
should pass all the test cases on Ed.

Abstract Data Type

Abstract Data Type (ADT)

« Composed of:
* A collection of data
* The operations that can be performed on that Data

* Describes what a collection does, not how it does it
* Not specific to Java!

Interface

e Java’s way of representing an Abstract Data Type

e Describes all the methods a class must have in order to be that
data type

* Doesn’t implement the methods
* A class with all the guts ripped out

2 New Abstract Data Types!

* queue
* line at a grocery store

4
| 9
A\ [{ >
i N ":,-.}S . ﬁ:ﬁ
. \a vht, 5 =
S i “ L
6 ‘o= = ;i %6 ce »

 stack
» stack of cafeteria trays

Queue Example

front back

remove

Queue ADT

* Queue: First-In, First-Out ("FIFO")
* No indices

* basic queue operations:
e add (enqueue): Add an element to the back.
* remove (dequeue): Remove the front element.
* peek: Examine the front element. remove, front back
peek add

Queues in Computer Science

* Operating systems:
e queue of print jobs to send to the printer
* queue of programs / processes to be run

* Programming:
* modeling a line of customers or clients
 storing a queue of computations to be performed in order

* Real world examples:
* people on an escalator or waiting in a line
e cars at a gas station (or on an assembly line)

Queue Interface in Java

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
size () returns number of elements in queue
isEmpty () |returns true if queue has no elements

Queue has other methods that are off-limits (not efficient)

Queue<String> g = new LinkedList<>();

LinkedList implements the Queue interface!

Stack Example

top

push Pop

bottom

Stack ADT

e Stack: Last-In, First-Out ("LIFO")
* No indices

* basic stack operations:
* push: Add an element to the top. push pop, peek

« pop: Remove the top element. \ /'

* peek: Examine the top element.

top C
b
bottom a

stack

Stacks in Computer Science

* Programming languages and compilers:
* method calls are placed onto a stack (call=push, return=pop)
* compilers use stacks to evaluate expressions

* Matching up related pairs of things: method3 | lecivae
* examine a file to see if its braces { } match p
* convert "infix" expressions to pre/postfix method2 | locivars
Sophlst|gated algorithms: | | thodt |p|
* searching through a maze with "packtracking"

* many programs use an "undo stack" of previous operations

Stack Class in Java

Stack<E> () |constructs a new stack with elements of type E

push (value) | places given value on top of stack

pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size () returns number of elements in stack

isEmpty () returns true if stack has no elements

Stack has other methods that are off-limits (not efficient)

Stack<String> s = new Stack<>();

Java messed up, there is no Stack interface ®

Misc. Notes

* Lecture and section problems are brainteasers, not great
applications of stacks and queues

* Practice problem solving!

* (Reminder: Exam problems are exactly like section problems! We're
not trying to surprise you)
* peek() method isn’t allowed on exam/section questions

