
Lecture 4: 
Stacks and 
Queues
06/29/22



A1: LetterInventory

• Due Thursday 6/30 @ 11:59pm

• To be making satisfactory progress in the course, your homework 
should pass all the test cases on Ed. 



Abstract Data Type

Abstract Data Type (ADT)
• Composed of:
• A collection of data
• The operations that can be performed on that Data

• Describes what a collection does, not how it does it
• Not specific to Java!



Interface

• Java’s way of representing an Abstract Data Type
• Describes all the methods a class must have in order to be that 

data type
• Doesn’t implement the methods
• A class with all the guts ripped out



2 New Abstract Data Types!

• queue
• line at a grocery store

• stack
• stack of cafeteria trays



Queue Example

backfront

remove add



Queue ADT
• Queue: First-In, First-Out ("FIFO")
• No indices

• basic queue operations:
• add (enqueue): Add an element to the back.
• remove (dequeue): Remove the front element.
• peek: Examine the front element.

queue

front back
a b c

add
remove, 
peek



Queues in Computer Science

• Operating systems:
• queue of print jobs to send to the printer
• queue of programs / processes to be run

• Programming:
• modeling a line of customers or clients
• storing a queue of computations to be performed in order

• Real world examples:
• people on an escalator or waiting in a line
• cars at a gas station (or on an assembly line)



Queue Interface in Java

add(value) places given value at back of queue
remove() removes value from front of queue and returns it;

throws a NoSuchElementException if queue is empty
peek() returns front value from queue without removing it;

returns null if queue is empty
size() returns number of elements in queue
isEmpty() returns true if queue has no elements

Queue has other methods that are off-limits (not efficient)

Queue<String> q = new LinkedList<>();

LinkedList implements the Queue interface!



Stack Example

bottom

top

push pop



Stack ADT

• Stack: Last-In, First-Out ("LIFO")
• No indices

• basic stack operations:
• push: Add an element to the top.
• pop: Remove the top element.
• peek: Examine the top element.

stack

top c
b

bottom a

pop, peekpush



Stacks in Computer Science

• Programming languages and compilers:
• method calls are placed onto a stack (call=push, return=pop)
• compilers use stacks to evaluate expressions

• Matching up related pairs of things:
• examine a file to see if its braces { } match
• convert "infix" expressions to pre/postfix

• Sophisticated algorithms:
• searching through a maze with "backtracking"
• many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters



Stack Class in Java
Stack<E>() constructs a new stack with elements of type E
push(value) places given value on top of stack
pop() removes top value from stack and returns it;

throws EmptyStackException if stack is empty
peek() returns top value from stack without removing it;

throws EmptyStackException if stack is empty
size() returns number of elements in stack
isEmpty() returns true if stack has no elements

Stack has other methods that are off-limits (not efficient)

Stack<String> s = new Stack<>();

Java messed up, there is no Stack interface L



Misc. Notes

• Lecture and section problems are brainteasers, not great 
applications of stacks and queues
• Practice problem solving!

• (Reminder: Exam problems are exactly like section problems! We’re 
not trying to surprise you)
• peek() method isn’t allowed on exam/section questions




