
 CSE143 Section #17 Problems

1. Binary Tree Traversals, 6 points. Consider the following tree.

 +---+
 | 7 |
 +---+
 / \
 +---+ +---+
 | 6 | | 5 |
 +---+ +---+
 / / \
 +---+ +---+ +---+
 | 3 | | 0 | | 9 |
 +---+ +---+ +---+
 \ / \ \
 +---+ +---+ +---+ +---+
 | 8 | | 2 | | 1 | | 4 |
 +---+ +---+ +---+ +---+

 Fill in each of the traversals below:

 Preorder traversal __

 Inorder traversal __

 Postorder traversal __

2. Binary Search Tree, 4 points. Draw a picture below of the binary search
 tree that would result from inserting the following words into an empty
 binary search tree in the following order: Java, Rust, Kotlin, Swift,
 Python, C, Go. Assume the search tree uses alphabetical ordering to
 compare words.

3. Collections Programming, 15 points. Write a method called recordDate that
 records information about a date between two people. For each person, the
 map records an ordered list of people that person has dated. For example,
 the map might record these entries for two people

 Michael => [Ashley, Samantha, Joshua, Brittany, Amanda, Amanda]
 Amanda => [Michael, Daniel, Michael]

 The dates are listed in reverse order. The list for Michael indicates that
 he most recently dated Ashley and before that Samantha and before that
 Joshua, and so on. Notice that he has dated Amanda twice. The list for
 Amanda indicates that she most recently dated Michael and before that Daniel
 and before that Michael. All names are stored as string values.

 The method takes three parameters: the map, the name of the first person,
 and the name of the second person. It should record the date for each
 person and should return what date number this is (1 for a first date, 2 for
 a second date, and so on). Given the entries above, if we make this call:

 int n = recordDate(dates, "Michael", "Amanda");

 The method would record the new date at the front of each list:

 Michael => [Amanda, Ashley, Samantha, Joshua, Brittany, Amanda, Amanda]
 Amanda => [Michael, Michael, Daniel, Michael]

 The method would return the value 3 indicating that this is the third date
 for this pair of people. When someone is first added to the map, you
 should construct a LinkedList object (we use LinkedList instead of
 ArrayList because it has fast insertion at the front of the list).

4. Comparable class, 15 points. Define a class called FoodData that stores
 information about a food item. Each FoodData object keeps track of the name
 of the food along with its number of grams of fat, carbohydrate, and
 protein. For example:

 FoodData item1 = new FoodData("sausage biscuit", 31.0, 39.0, 11.0);
 FoodData item2 = new FoodData("strawberry sundae", 6.0, 49.0, 6.0);
 FoodData item3 = new FoodData("banana", 0.4, 31.1, 1.5);

 In calling the constructor, the name is followed by fat grams, followed by
 carbohydrate grams, followed by protein grams. For example, the sausage
 biscuit above has 31 grams of fat, 39 grams of carbohydrate, and 11 grams
 of protein. As in the third example, these values can be real numbers.
 Your constructor should throw an IllegalArgumentException if any of the
 numeric values passed to it is negative.

 This class is being designed for programs that will help people who want to
 use a low-fat diet. For example, it is a bit surprising that the McDonalds
 sausage biscuit (item1) gets over 58% of its calories from fat while the
 McDonalds strawberry sundae (item2) gets only around 19.7% of its calories
 from fat. The banana (item3) gets less than 2.7% of its calories from fat.

 Your class should have the following public methods:

 getName() returns the name of this food item
 getCalories() returns total calories for this food item
 percentFat() returns the percent of calories from fat for this item
 toString() returns a String representation of this item

 To compute total calories and percent fat, assume that each gram of fat is 9
 calories and that each gram of carbohydrate and protein is 4 calories. For
 example, the calories for the strawberry sundae (item2 above) are 274:

 9 * (fat grams) + 4 * (carb grams) + 4 * (protein grams) =
 9 * 6.0 + 4 * 49.0 + 4 * 6.0 = 274.0

 Its percent fat is a little over 19.7 because the calories from fat are 54
 and the total calories are 274. As usual, percentages should be expressed
 as real numbers in the range of 0.0 to 100.0. You may assume that the
 number of calories will be greater than 0.

 The toString method should include the name of the item followed by a colon
 followed by the fat, carbohydrate and protein grams, separated by commas,
 and labeled, as in the following examples for item1, item2, and item3 above:

 sausage biscuit: 31.0g fat, 39.0g carbohydrates, 11.0g protein
 strawberry sundae: 6.0g fat, 49.0g carbohydrates, 6.0g protein
 banana: 0.4g fat, 31.1g carbohydrates, 1.5g protein

 Your class should also implement the Comparable interface. Items should be
 ordered first by percent of calories coming from fat (lowest to highest) and
 then by name (sorted alphabetically).

5. Binary Trees, 10 points. Write a method of the IntTree class called
 inorderList that returns a list containing the sequence of values obtained
 from an inorder traversal of the tree. For example, if a variable t stores
 a reference to the following tree:
 +---+
 | 7 |
 +---+
 / \
 +---+ +---+
 | 4 | | 2 |
 +---+ +---+
 / / \
 +---+ +---+ +---+
 | 9 | | 5 | | 0 |
 +---+ +---+ +---+

 then the call t.inorderList() should return the following list:
 [9, 4, 7, 5, 2, 0]
 Your method should construct an ArrayList to return. If the tree is empty,
 your method should return an empty list.

 You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not call any other methods of the class. You may not construct any
 extra data structures other than the ArrayList you are returning.

6. Details of inheritance, 10 points. Assuming that the following classes have
 been defined:

 public class Cup extends Box {
 public void method1() {
 System.out.println("Cup 1");
 }

 public void method2() {
 System.out.println("Cup 2");
 super.method2();
 }
 }

 public class Pill {
 public void method2() {
 System.out.println("Pill 2");
 }
 }

 public class Jar extends Box {
 public void method1() {
 System.out.println("Jar 1");
 }

 public void method2() {
 System.out.println("Jar 2");
 }
 }

 public class Box extends Pill {
 public void method2() {
 System.out.println("Box 2");
 }

 public void method3() {
 method2();
 System.out.println("Box 3");
 }
 }

And assuming the following variables have been defined:

 Box var1 = new Box();
 Pill var2 = new Jar();
 Box var3 = new Cup();
 Box var4 = new Jar();
 Object var5 = new Box();
 Pill var6 = new Pill();

In the table below, indicate in the right-hand column the output produced by
the statement in the left-hand column. If the statement produces more than one
line of output, indicate the line breaks with slashes as in "a/b/c" to indicate
three lines of output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with either the phrase
"compiler error" or "runtime error" to indicate when the error would be
detected.

 Statement Output
 --

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 var4.method3(); ____________________________

 ((Cup)var1).method1(); ____________________________

 ((Jar)var2).method1(); ____________________________

 ((Cup)var3).method1(); ____________________________

 ((Cup)var4).method1(); ____________________________

 ((Jar)var4).method2(); ____________________________

 ((Box)var5).method2(); ____________________________

 ((Pill)var5).method3(); ____________________________

 ((Jar)var2).method3(); ____________________________

 ((Cup)var3).method3(); ____________________________

 ((Cup)var5).method3(); ____________________________

7. Binary Trees, 20 points. Write a method of the IntTree class called tighten
 that eliminates branch nodes that have only one child from the tree. For
 example, if a variable called t stores a reference to the following tree:

 +----+
 | 12 |
 +----+
 / \
 +----+ +----+
 | 28 | | 19 |
 +----+ +----+
 / /
 +----+ +----+
 | 94 | | 32 |
 +----+ +----+
 / \ \
 +----+ +----+ +----+
 | 65 | | -8 | | 72 |
 +----+ +----+ +----+
 \ / \
 +----+ +----+ +----+
 | 10 | | 42 | | 50 |
 +----+ +----+ +----+

 then the call:

 t.tighten();

 should leave t storing the following tree:

 +----+
 | 12 |
 +----+
 / \
 +----+ +----+
 | 94 | | 72 |
 +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 65 | | 10 | | 42 | | 50 |
 +----+ +----+ +----+ +----+

 Notice that the nodes that stored the values 28, 19, 32, and -8 have all
 been eliminated from the tree because each had one child. When a node is
 removed, it is replaced by its child. Notice that this can lead to multiple
 replacements because the child might itself be replaced (as in the case of
 19 which is replaced by its child 32 which is replaced by its child 72).

 You are writing a public method for a binary tree class defined as follows:

 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not assume that any particular methods are available. You are not
 allowed to change the data fields of the existing nodes in the tree (what we
 called "morphing" in assignments 7 and 8), you are not allowed to construct
 new nodes or additional data structures, and your solution must run in O(n)
 time where n is the number of nodes in the tree.

8. Linked Lists, 20 points. Write a method of the LinkedIntList class called
 shiftLastOf3 that shifts the third value in each successive group of three
 from a list of integers to the front of the list, preserving the relative
 order of the values and returning a count of the number of nodes that were
 shifted. For example, if a variable called list stores these values:

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
 | | | | | | | |
 +-----+ +-----+ +-----+ +------+
 group group group group

 Then after the call:

 int count = list.shiftLastOf3();

 the list should store the following values:

 [2, 5, 8, 11, 0, 1, 3, 4, 6, 7, 9, 10]

 and the variable count would be set to 4. Notice that the original list has
 four groups of three values. The last value in each group (2, 5, 8, and 11)
 has been shifted to the front of the list but otherwise all values still
 have the same relative ordering as they did in the original list. Because
 four values were shifted, the method returns a value of 4.

 This example uses consecutive integers to make it easier to see the effect
 of the shifting, but you should not make any assumptions about the values in
 the list. It also has no stray values at the end. If there are extra
 values at the end of a list that don't make a complete group of three, then
 they are not shifted. For example, if a list contains fewer than three
 values, then no values are shifted and the method would return a count of 0.

 As another example, if list had instead stored these values:

 [3, 19, 7, 45, -2, 8, 6, 18, 42, 5, 12]
 | | | | | |
 +------+ +------+ +-------+
 group group group

 then after the method is called, it would store these values:

 [7, 8, 42, 3, 19, 45, -2, 6, 18, 5, 12]

 and the method would return 3 to indicate that three values were shifted.

 You are writing a public method for a linked list class defined as follows:

 public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list

 <constructors>
 }

 public class LinkedIntList {
 private ListNode front;

 <methods>
 }

 You are writing a method that will become part of the LinkedIntList class.
 You may define private helper methods to solve this problem, but otherwise
 you may not assume that any particular methods are available. You are
 allowed to define your own variables of type ListNode, but you may not
 construct any new nodes, you may not use any auxiliary data structure to
 solve this problem (no array, ArrayList, stack, queue, String, etc), and
 your solution must run in O(n) time where n is the number of nodes in the
 list. You also may not change any data fields of the nodes. You MUST solve
 this problem by rearranging the links of the list.

