Building Java Programs

Binary Search Trees

reading: 17.3 -17.4

* What is the output of this program?

public static void main(String[] args)
Point p = new Point(l, 2);
changel (p) ;

System.out.println (p) ;
change?2 (p) ;
Sy tenontyprinElaei:

public static void changel (Point p)
p.x = 14;

public static void changeZ (Point p)
S b e N A B R Sy A

Poll Everywhere

{

{

{

pollev.com/csel43

CO

Nntains

Ry

}

private boolean contains (IntTreeNode root,

int value) {
if (root == null) {
return false;

} else if (root.data == value) {
return true;
} else {

return contains (root.left, wvalue)
| | contains (root.right, wvalue);

root,

E\O\ieraflRoot

P e

Case study: contains w/ arrays

* What is the Big-O efficiency to see if a value is contained in
an unsorted array?

-3 187142 |55(91]29]|60

* What about if the array is sorted?

-3129142|55(60|87]|91

Binary search trees

binary search tree ("BST"): a binary tree where each
non-empty node R has the following properties:

elements of R's left subtree contain data "less than" R's data,
elements of R's right subtree contain data "greater than" R's,
R's left and right subtrees are also binary search trees.

; _ overall root
BSTs store their elements in

sorted order, which is helpful
for searching/sorting tasks.

29 87
@ ® @ @

BST examples

* Which of the tre e legal bin y

. R

S Won @%
@
8D (@13 7

e

Searching a BST

Describe an algorithm for searching a binary search tree.
Try searching for the value 31, then 6.

What is the maximum overall root
number of nodes you '
would need to examine @

to perform any search?

(12 &

> » @ 9
IOl CIOXOINIDIG)

Exercise

* Convert the IntTree class into a SearchTree class.
The elements of the tree will form a legal binary search tree.

* Write a contains method that takes advantage of the BST

structure.

Lree.
tree.
tree.

BIee

contains
O RS
contailns

contains

=TS
el overall root

—> false
— false

29 87
@ ® @ @

g

Exercise solution

// Returns whether this BST contains the given integer.
pubdircorbooloanccontarnsrnt wralkue) o
return contains (overallRoot, wvalue):;

}

private boolean contains (IntTreeNode node, int value) {

1f (node == null) {

return false; Llvbase caser not found here
} else 1f (node.data == wvalue) {

reburnahrue? Llbase s oaser tound here

} else if (node.data > wvalue) {

return contains (node.left, wvalue);
} else { // root.data < wvalue

return contains (node.right, wvalue) ;

}

10

Adding to a BST

e Suppose we want to add new values to the BST below.
Where should the value 14 be added? el roat

Where should 3 be added? 7?
If the tree is empty, where
should a new value be added?

* What is the general algorithm? 5 : >\

11

Adding exercise

e Draw what a binary search tree would look like if the
following values were added to an initially empty tree in
this order:

50
20
/5
98
30
31
150
39
23
11
77

12

Exercise

e Add a method add to the searchTree class that adds a
given integer value to the BST.

Add the new value in the proper place to maintain BST

ordering.
overall root

e tree.add(49),

13

An incorrect solution

s heid b ecsaie R ara e e Rl dre G G s et e el slien

pabdir cevvenrdiiadestint eeline o
add (overallRoot, value) ;

}
private void add(IntTreeNode node, int value) {
i1f (node == null) {
node = new IntTreeNode (value) ; overallRoot
Eiedlisavipr B iinod e diaipasis e admi el
add (node.left, wvalue);
PaoelsavidErdnedendatba - valane)i
add (node.right, wvalue);
} ® @
// else node.data == value, so
// it's a duplicate (don't add) @ @ @ @
}

* Why doesn't this solution work?

—

The X = change(x)
pattern

read 17.3

A tangent: Change a point

* What is the state of the object referred to by p after this

code?
publycistatic ivord main{(Stringll args)ii
Point p = new Point (1, 2);
change (p) ; b o e)

System.out.println (p);

}

public static void change (Point thePoint) {
thePoint.x 6 i
thePoint.y 4;

}

// answer: (3, 4)

16

oSBT g RS

Ry

Change point, version 2

* What is the state of the object referred to by p after this

code?

publicistatic voidimain{Stringll args)
Point p = new Point (1, 2);
change (p) ; p —

System.out.println (p);
}

{

X
—
N
N

o

public static void change (Point thePoint) {

thePoint = new Point (3, 4);
}

// answer: (1, 2)

L

17

Changing references

» If a method dereferences a variable (with .) and modifies
the object it refers to, that change will be seen by the

P e

caller.

publizcistatrc wvoidichange (PeintwthePoint)yid
thePoink v —3 Llatbectsip
thePoint.setY (4); LAt e saD

o If a method reassigns a variable to refer to a new object,
that change will not affect the variable passed in by the

caller.

pubilvcrstat i crvold iehange (Polnt thePolmtgy oy
Ehe R o= e B Lty o dan // p unchanged
thePoint = null; // p unchanged

What if we want to make the variable passed in become null?
18

Ry

oSBT g RS

Change point, version 3

* What is the state of the object referred to by p after this

code?
publycistatic ivord main{(Stringll args)ii
Point p = new Point (1, 2);
change (p) ; e G)

System.out.println (p);

}

public static Point change (Point thePoint) {
thePoint = new Point(3, 4y
return thePoint; \\

}

v, G s oo o o i B

// answer: (1, 2)

T

-

Change point, version 4

* What is the state of the object referred to by p after this

code?
publycistatic ivord main{(Stringll args)ii
Point p = new Point (1, 2);
P = change(p):; O LA A Y O 1 v i

System.out.println (p);

} /
public static Point change (Point thePoint) {
thePoint = new Point(3, 4y
return thePoint; \\

}

L S v e |

// answer: (3, 4)

X = change(x);

e If you want to write a method that can change the object
that a variable refers to, you must do three things:

1. pass in the original state of the object to the method
2. return the new (possibly changed) object from the method
3. re-assign the caller's variable to store the returned result

p = change(p) ; /ol in main

pub eyt al e Rorn -y change Pownt i e Podrtayg
e al SV o R e e SV B e il a i g SRS AV (R
return thePoint;

 We call this general algorithmic pattern x = change(x);
also seen with strings: s = s.toUpperCase () ;

21

The problem

* Much like with linked lists, if we just modify what a local
variable refers to, it won't change the collection.

node —>

private void add(IntTreeNode node, int value) {
if (node == null) {
node = new IntTreeNode (value) ;

overallRoot

}

In the linked list case, how did we
actually modify the list?
- by changing the front

- by changing a node's next field @ @ @ @

22

P e

Applying x = change(x)

* Methods that modify a tree should have the following

pattern:
input (parameter): old state of the node
output (return): new state of the node
node parameter your return node
before 1 method - after

e In order to actually change the tree, you must reassign:

node, parameters) ;
node.left, parameters) ;
node.right, parameters);
overallRoot, parameters) ;

node = change
node.left = change
node.right = change
overallRoot = change

i T Rl T el 4 el

R o S R ' .
A correct solution

s heid b ecsaie R ara e e Rl dre G G s et e el slien
pabdir cevvenrdiiadestint eeline o

overallRoot = add(overallRoot, wvalue);

}

private IntTreeNode add (IntTreeNode node, 1nt wvalue) {
if (node == null) |

node = new IntTreeNode (value) ;

} else 1f (node.data > wvalue) {
node.left = add(node.left, wvalue);

} else 1if (node.data < wvalue) {
node.right = add(node.right, wvalue);

Poielicevan dupliaral e ido oL ing

overallRoot

return node;

| @O @

* What happens when node is a leaf?

24

