Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1

Road Map - Quarter

CS Concepts
« Client/Implementer
« Efficiency

Data Structures

Lists
Stacks
Queues
Sets
Maps

Java Language
« EXxceptions

« Interfaces

« References

Java Collections

Arrays

ArrayList

LinkedList

Stack

TreeSet / TreeMap
HashSet / HashMap

e

Road Map - Week

* Monday

Introduce idea of “recursion”

Goal: Understand idea of recursion and read recursive code.
e Tuesday

Practice reading recursive code
* Wednesday

More complex recursive examples

Goal: Identify recursive structure in problem and write
recursive code

e Thursday

Practice writing recursive code
* Friday

Exam logistics

Set-up for A5

Exercise

* (To a student in the front row)

How many students total are directly behind you in your
"column" of the classroom?

How many people are in this column?
S ... Uh, how do I figure that out again?
You have poor vision, so you can
see only the people right next to you. v

So you can't just look back and count.

But you are allowed to ask
questions of the person next to you.

How can we solve this problem?
(recursively)

Recursive algorithm

* Number of people behind me:

If there is someone behind me,
ask him/her how many people are behind him/her.

- When they respond with a value N, then I will answer N + 1.

If there is nobody behind me, I will answer 0.

;ow many people are behind me?

2 How many people are behind me?

l & 1. How many people are behind me?

The idea

e Recursion is all about breaking a big problem into smaller
occurrences of that same problem.

Each person can solve a small part of the problem.

- What is a small version of the problem that would be easy to
answer?

- What information from a neighbor might help me?

;ey, neighbor, help me out!

Hey neighbor, help me out!

l & ;ey heighbor, help me out!

Recursion

recursion: The definition of an operation in terms of itself.

Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

recursive programming: Writing methods that call
themselves to solve problems recursively.

An equally powerful substitute for iteration (loops)
Particularly well-suited to solving certain types of problems

Why learn recursion?

"Cultural experience" - think differently about problems

Solves some problems more naturally than iteration

Can lead to elegant, simplistic, short code (when used well)

Many programming languages ("functional" languages such

as Scheme, ML, and Haskell) use recursion exclusively (no
loops)

A key component of many of our assignments in CSE 143

10

D o
Getting down stairs

. r
- = [
. S
e 2T e \
1 + ‘

* Need to know two things:
» Getting down one stair
» Recognizing the bottom

* Most code will look like:

if (simplest case) {
COMPUEE e WV B IR O OIE)
preliserid
divide into similar subproblem(s)
solve each subproblem recursively

assemble the overall solution

Tk

Recursion and cases

* Every recursive algorithm involves at least 2 cases:

base case: A simple occurrence that can be answered
directly.

recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

A crucial part of recursive programming is identifying these
cases.

12

Ry

P e

Linked Lists are Self-Similar

e a linked list is:

null
a hode whose next field references a list

* recursive data structure: a data structure partially
composed of smaller or simpler instances of the same data
structure

13

o4

TP

A S
:\(..h.\.,.t..,)

/vrﬁ .
Another recursive task

* How can we remove exactly half of the M&M's in a large
bowl, without dumping them all out or being able to count
them?

» What if multiple people help out with solving the problem?
Can each person do a small part of the work?

» What is a number of M&M's
that it is easy to double,
even if you can't count?

« (What is a "base case"?)

16

Recursion In Java

* Consider the following method to print a line of *
characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
publire st at ey ot d DR Nt SR ars NG)en
3 s Aival b) G B o D o Ao s o el i o) i
Sy stenm o ipra sy

}
System.out.println () ; // end the line of output

* Write a recursive version of this method (that calls itself).
Solve the problem without using any loops.
Hint: Your solution should print just one star at a time.

17

A basic case

» What are the cases to consider?
What is a very easy number of stars to print without a loop?

pubdireyrstatie - void printSars (int -y 1
if (n == 1) {
// base case; just print one star
SYyistemiospel e br et
} else {

}

18

Handling more cases

 Handling additional cases, with no loops (in a bad way):

RPubilscasEalaicHv o G DR NS ol S Bty
1if (n == 1) {
// base case; just print one star
CAvcHe - AsivE e sl Byl e n s B
S e e
Sy s Eenpoaprhnta it s
Sy obemvoutan prpeee ety
Fveliaaraifin e gy
System.out.print ("*");
SysiRem ot s pr L
Svistemioutiprinblnit2 s
e e e A
ShAcHE s He e chenlgl B CiBa B
Sy Shemi oY N
Sy e em ot s pre i ()
Syvistem outYprinen sy
mecdacle

g

o
7

e

Handling more cases 2

» Taking advantage of the repeated pattern (somewhat
better):

pubdl e s Eatc oA DR NSt st
e
// base case; just print one star
SViS Eem-Olt s pra by (AT

i S R e e S R

SAvA s S AU B o A Mg BN Vilaa s

printStars (1) ; [/ Drints oy
Fraliser s s R

CAcRe i Aeus e el Su AR

printStars (2); Ll prints TErN
] B o e !

System.out.print ("*");

printStars (3) ; L prints kARl

} else

20

g

Using recursion properly

* Condensing the recursive cases into a single case:

RPubilscasEalaicHv o G DR NS ol S Bty

T
// base case; just print one star
SN S S O E S DI T Ty (S e

} else |
// recursive case; print one more star
SystEemiour.prine (s
printStars(n - 1) ;

21

T

"Recursion Zen"

* The real, even simpler, base case is an n of 0, not 1:

RPubilscasEalaicHv o G DR NS ol S Bty

T P v e et v)
// base case; just end the line of output
ShRes e b sl haiuiing s & VL

fove i e o]
// recursive case; print one more star
SystEemiour.prine (s
printStars(n - 1) ;

Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

22

g

Recursion vs Iteration

pUub e s ot avolt Wb e SESE S R)=y
witibe v eny > 20950
Sy sbemyoubyprin Clntty:
Q==
}
A S e S SR sl R A

BHbE SN AN e SR N e S AV ® FIS MR By Iva B SN b B S A R 8 e g Lo |
BEa N ==y
SYeebem T outaroriine i nvi) g
} else {
S eramiren e iy (Al e

writeStars(n - 1);

23

=

Recursion vs Iteration

pUub e s ot avolt Wb e SESE S R)=y
AR e e A st g
Systemsoutiprint (N
Q==
}

System.out.println(); // base case. assert: n ==

BHbE SN AN e SR N e S AV ® FIS MR By Iva B SN b B S A R 8 e g Lo |
if (n == 0) {
System.out.println(); // base case
} else {
A e B S0 110 B0 e A0 s YA i A oV

1780 G o = 2 o s 5 e 4 A it 2 PO

24

Recursion vs Iteration

pUub e s ot avolt Wb e SESE S R)=y
e e S e e B e B e e e D S R
System.out.print ("*"); // small piece of problem
I8 Contendy
}
Syistemic:ountbioprentinitys:

BHbE SN AN e SR N e S AV ® FIS MR By Iva B SN b B S A R 8 e g Lo |
if (n == 0) {
SavAsdmSiEtoTul B e nuNata o & I
Jape e e e e e T e S e e e e e e e ()
System.out.print ("*"); // small piece of problem

1780 G o = 2 o s 5 e 4 A it 2 PO

25

dfégggﬁﬁ/f’flz——
Recursion vs Iteration

pUub e s ot avolt Wb e SESE S R)=y

whiletny a0 recursivieY case
Systemsoutiprint (N
n--; // make the problem smaller

}
ST S S S e e IS AR

pUiir st ety ordiwribeSar St iy
RS el
SavAsdmSiEtoTul B e nuNata o & I
Jape e e e e e T e S e e e e e e e ()
A e B S0 110 B0 e A0 s YA i A oV
writeStars(n - 1); // make the problem smaller

26

/ﬁ

Recursive tracing

e Consider the following recursive method:

publideyvisbatrernymys ey Cin)iy
Sl ek 00
el nyang,
} else {
Tata =m0 10
b ot e OB
return mystery(a + b);

What is the result of the following call?
mystery (648)

Ry

27

/ i

A recursive trace

mystery (648) :

int a = 648 / 10; // 64
int b = 648 % 10; 78

returnamysterylay s bl // mystery (72)

mysterv (72) :

Mol e avioiee sl Sl
A o B @ ey e S A 2
= return mystery(a + b); // mystery(9)

mysterv (9) :

= return 9;

28

Recursive tracing 2

e Consider the following recursive method:

publideyvisbatrernymys ey Cin)iy
S5 el plo e vl L A B S
Jge el eng clalair s n s e
} else {
int a mystery(n / 10);
int b = mystery(n % 10);
§l= B U) e e DG Ao B e i

What is the result of the following call?
mystery (348)

29

/ﬁ

A recursive

trace 2

mystery (348)

int a = mystery(34);

RS QR e G A Bl SR e R

D= 1 0 B e U G 1§ P P o Ve Sy e B // 33

IS B B O A B APl I U (4 DL

return (10 * 4) + 4; // 44

e Teturn (100 * 33) F 44; /73344

int b = mystery(8);

Feturn tE0 8y 28 // 88

return (100 * 3344) + 88; // 334488

What is this method really doing?

30

Exercise

* Note: We did reverseDeck in lecture but they are the
exact same problem

* Write a recursive method reverselLines that accepts a file
Scanner and prints the lines of the file in reverse order.

Example input file:

Expected console output:

I have eaten
the plums
that were 1n

the icebox

the icebox
—_— that were in
the plums

I have eaten

What are the cases to consider?
- How can we solve a small part of the problem at a time?
- What is a file that is very easy to reverse?

31

Reversal pseudocode

e Reversing the lines of a file:
Read a line L from the file.
Print the rest of the lines in reverse order.
Print the line L.

e If only we had a way to reverse the rest of the lines of
the file....

32

Reversal solution

public static void reversellnes (Scanner input)
1f (input.hasNextLine()) {
// recursive case
sString liane - anpUtanextlane ()
reverselines (input) ;
System.out .println(line);

Where is the base case?

{

35

Ry

oSBT g RS

” Tracing our algorithm

e call stack: The method invocations currently running

reversellnes (new Scanner ("poem.txt"));

1f (input.hasNextLine()) {

Ct++1inea 1ine = 1inrmiit nevtrTaine ()

public static void reverselines (Scanner input) {

"T hasra aatan"

1f (input.hasNextLine()) {

[alF S 1 = P B . sz T o an [\ o

public static void reverselines (Scanner input) {

Wideln o amn T aaen =~ V1

if (input.hasNextLine()) {

S+ +1ina 1line = 1inrmiit nevtTaine () .

public static wvoid rgverseLines(Scanner input) {

"+hat wara In"

if (input.hasNextLine()) {

C+ramrney 1l aman — Aanrinit rneoasz+T 9o () e

public static void reverselines (Scanner input) {

"dehAaAa am~salhaAa<e!

if (input.hasNextLine ()) { // false

}

public static void reverselilnes (Scanner 1input) {

1L IIAavT CACLtTIl
the plums
that were in
the icebox

CIIT 1T CTIUOUA
that were in
the plums

I have eaten

34

