Building Java Programs

Chapter 14
stacks and queues

reading: 14.1-14.4







e

~ Abstract data types (ADTs)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it

* We don't know exactly how a the collections is
implemented, and we don't need to.

We just need to understand the idea of the collection and what
operations it can perform



Stacks and queues

* Some collections are constrained so clients can only use
optimized operations

stack: retrieves elements in reverse order as added
queue: retrieves elements in same order as added

push\ / pop, peek
front back
remove, peek
top| 3 b ] > 3 . add
2
pottom| 1 Sais

stack



Stack Example
S L

push

pPop

bottom




Stacks

» stack: A collection based on the principle of adding
elements and retrieving them in the opposite order.
Last-In, First-Out ("LIFO") 2

Elements are stored in order of insertion.
- We do not think of them as having indexes.

Client can only add/remove/examine
the last element added (the "top"). push pop, peek

* basic stack operations:

push: Add an element to the top. top| 3
pop: Remove the top element. 5
peek: Examine the top element.

bottom 1
stack




e

s

Stacks in computer science

* Programming languages and compilers:
method calls are placed onto a stack (call=push, return=pop)
compilers use stacks to evaluate expressions

return var

. . j meth0d3 local vars

e Matching up related pairs of things: i
find out whether a string is a palindrome method2 | peares

1 1 1 1 return var

examine a file to see if its braces { } match bl ol vry

convert "infix" expressions to pre/postfix

e Sophisticated algorithms:
searching through a maze with "backtracking"
many programs use an "undo stack" of previous operations



g
Class stack

Stack<E> () |constructs a new stack with elements of type E

push (value) | places given value on top of stack

pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty

sere () returns number of elements in stack

isEmpty () returns true if stack has no elements

Stack<String> s = new Stack<String>();

e NB R AT LMD
SeplshaCT o
SepuEs e Ty

// bOttOm [nan’ "b", "C"] tOp

Syotem et printin s pop ) /) el

Stack has other methods that are off-limits (not efficient)



g

Collections of primitives

* The type parameter specified when creating a collection
(e.g. ArrayList, Stack, Queue) must be an object type

// illegal -- int cannot be a type parameter

Stack<int> s = new Stack<int>();
ArrayList<int> list = new ArraylList<int>();

* Primitive types need to be "wrapped" in objects

// creates a stack of ints
Stack<Integer> s = new Stack<Integer>() ;



—

g

Stack limitations/idioms

* You cannot loop over a stack in the usual way.

Stack<Integer> s = new Stack<Integer>();

» Instead, you pull elements out of the stack one at a time.

common idiom: Pop each element until the stack is empty.

// process (and destroy) an entire stack
whidiez s asEmpEy )y d

do something with s.pop();
}

10



What happened to my stack?

» Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the
stack:

// Precondition: !'s.isEmpty ()
public static void max (Stack<Integer> s) {

TR maxY alue t=ris popitly;
T e S PR e e AR e
TR e = S YR
maxValue = Math.max (maxValue, next);

}

return maxValue;

The algorithm is correct, but what is wrong with the code?



What happened to my stack?

 The code destroys the stack in figuring out its answer.
To fix this, you must save and restore the stack's contents:

public static void max (Stack<Integer> s) {
Stack<Integer> backup = new Stack<Integer>() ;
int maxValue = s.pop():
backup.push (maxValue) ;

while (!s.isEmpty()) {
int next = s.popl);
backup.push (next) ;
maxValue = Math.max (maxValue, next):;

}

while ('backup.isEmpty()) ({ // restore
s .push (backup.pop()) ;
}

return maxValue;



Queue Example

remove

—

13



Queues

* queue: Retrieves elements in the order they were added.

First-In, First-Out ("FIFO")
Elements are stored in order of
insertion but don't have indexes.

Client can only add to the end of the

queue, and can only examine/remove

the front of the queue.

remove, peek

«—

* basic queue operations:

queue

add (enqueue): Add an element to the back.
remove (dequeue): Remove the front element.

peek: Examine the front element.

14



e

I e R T

Queues in computer science

* Operating systems:
queue of print jobs to send to the printer
queue of programs / processes to be run
queue of network data packets to send

* Programming:
modeling a line of customers or clients
storing a queue of computations to be performed in order

e Real world examples:
people on an escalator or waiting in a line
cars at a gas station (or on an assembly line)

15



Ry

~ Programming with Queues

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
b A returns number of elements in queue
isEmpty () |returns true if queue has no elements

Quenes mbege > —peny inkediEEEKInteger>();

g.add (42) ;
Gaaddit=3%:;
R Tare

Ll

// front [42, -3, 17] back

System.out.println(g.remove () ) ; // 42

IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.

- This is because Queue is an interface

16



Ry

Queue idioms

* As with stacks, must pull contents out of queue to view
them.

// process (and destroy) an entire queue
wihaslie i amais PmMpE S G v

do something with g.remove () ;
}

another idiom: Examining each element exactly once.

T T B I WAl MBI RS 10 A I 9
for (int i = 0; i < size; i++) {
do something with g.remove () ;
(including possibly re-adding it to the queue)
}

« Why do we need the size variable?



Ry

Mixing stacks and queues

* We often mix stacks and queues to achieve certain effects.
Example: Reverse the order of the elements of a queue.

Queue<Integer> g = new LinkedList<Integer>() ;
Gl

Givadae2a

g.add(3); LY 2y 3

Stack<Integer> s = new Stack<Integer> () ;

while (!g.isEmpty()) { // Q -> S
s.push (g.remove () ) ;

}

while (!s.isEmpty()) { // S > 0Q

g.add(s.pop());
}

System.out.println(qg); s e e



Exercises

* Write a method repeat that accepts a queue of integers as

a parameter and replaces every element of the queue with
two copies of that element.

ik e e fal B e S e e Ve
becomes
T A e Dy M S RN

* Write a method mirror that accepts a queue of strings as a

parameter and appends the queue's contents to itself in
reverse order.

Ereonaiardn ane vl a ek
becomes
S RN N s e S e s ey o el eVo Hel

19



