
Intro to BFS/DFS

Credit

Some diagrams are taken from Dan Weld’s CSE 473 class. I

do not own any of this material.

Fringe = holds states we still
can explore

Strategy = which node do I
choose from my fringe?

Many different possibilities:
First one we added to fringe,
Last one we added to fringe,
A random one?

Breadth-First-Search (BFS) cont.

Don’t Explore the Same Node Twice!

● It doesn’t make sense to try exploring a node our

search has already visited
○ Makes our fringe hold extra data we don’t need to

explore

○ Could possibly lead to infinite loops with cycles

● Fix: Keep a Set of all the states we have already

visited
○ Only add nodes to the fringe that we haven’t visited

yet

● Will assume throughout the rest of presentation
that we have created this visited Set

Will explore A, B, C, A, B, C,

BFS Exercise:
What order are nodes explored in?
Assume ties are settled by alphabetical
order, C will be added to fringe before E in
this example, assume search ends when we
see END

Correct Answer:
Start, C, E, B, D, A, F, End

Current node: fringe

Start: [C, E]
C: [E, B, D]
E: [B, D, A]
B: [D, A]
D: [A]
A: [F]
F: [End]

BFS Pseudo-code

● Add the start state to the queue

● While the queue is not empty

○ Remove the next state from the queue and set as current

○ Mark the current state as visited

○ If current state is the goal

■ return the path to the goal

○ otherwise

■ for each successor state

● if successor has not been marked as visited

○ save path and add the successor to the queue

Let’s Implement BFS in Friends.java

Depth-First-Search (DFS)

● Same application of the general Tree Search but our STRATEGY changes

● New Strategy : Expand the DEEPEST NODE FIRST

● Fringe is implemented as a Stack instead

○ The most recently discovered node will be expanded next

DFS Exercise:
What order are nodes explored in?
Assume ties are settled by alphabetical
order, C will be added to fringe before E in
this example, assume search ends when we
see END

Correct Answer: bot [1, 2, 3, 4, 5] top
Start, E, A, F, End

Current node: fringe

Start: [C, E]
E: [C, A]
A: [C, F]
F: [C, End]

DFS Pseudo-code

● Push the start state to the stack

● While the stack is not empty

○ Pop the next state from the stack and set as current

○ Mark the current state as visited

○ If current state is the goal

■ return the path to the goal

○ otherwise

■ for each successor state

● if successor has not been marked as visited

○ save path and push successor to the stack

Maze Generation

● Set a random cell as the current cell

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

● At dead end, backtrack until we find a

cell with a neighbor we haven't gone to

yet.

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

● At dead end, backtrack until we find a

cell with a neighbor we haven't gone to

yet.

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

● At dead end, backtrack until we find a

cell with a neighbor we haven't gone to

yet.

● Repeat from step 2 until we visit every

node

Maze Generation

● Set a random cell as the current cell

● Check its neighbors

○ Pick a random neighbor we

haven't gone to yet

○ Remove the wall between them

○ Set new cell to current

○ Repeat until we reach a dead

end

● At dead end, backtrack until we find a

cell with a neighbor we haven't gone to

yet.

● Repeat from step 2 until we visit every

node

Maze Generation

● Wow! What a fun maze!

Maze Generation Pseudo-code

● Choose an initial cell, mark it as visited and push it to the stack

● While the stack is not empty
○ Pop a cell from the stack and mark it as the current cell

○ If the current cell has any neighbors which have not been visited

■ Push the current cell to the stack

■ Randomly choose one of the unvisited neighbors

■ Remove the wall between the current cell and the chosen cell

■ Mark the chosen cell as visited and push it to the stack

Dijkstra’s Algorithm

● Very similar to Breadth First Search, but the strategy is slightly different

● New Strategy : Expand the cheapest shallow node first

○ Each node has a cost

○ Choose node with the least-cost path to it

○ Expanded nodes include previous node's cost

● Uniform Cost Search

○ Variation of Dijkstra's

○ Insert nodes into fringe only when encountered

UCS Example (using $ as cost)

Current node: fringe
Start: [B ($1), C ($2)]

choose B for $1 and expand nodes
(include cost of B; e.g. D = $2 + $1)

B: [C ($2), D ($3)]
choose C for $2 and expand nodes

C: [D ($3), End ($6)]
choose D for $3 and expand nodes

D: [End ($4), End ($6)]
choose End for $4 - this is the
cheapest cost path!

UCS Exercise:
What order are the nodes explored in?
Ties are settled alphabetically.

Correct Answer:
Start-B-C-A-D-E-G-F-End

Current node: fringe
Start: [B (1), C (2)]
B: [C (2), E (5)]
C: [A (3), D (4), E (5)]
A: [D (4), E (5)]
D: [E (5), G (5)]
E: [G (5), F (6), End (7)]
G: [F (6), End (7), End(8)]
F: [End (7), End(8)]

