INntro to BFS/DFS

\ Credit

Some diagrams are taken from Dan Weld’s CSE 473 class. |
do not own any of this material.

Search Trees

“Go North” “Go East”
/ \

e ™ N

= A search tree:
* Tree’s root node corresponds to the start state
Children correspond to successors (application of operator)
Edges are labeled with actions/operators and costs
Nodes in the tree contain states, correspond to PATH to those states
For most problems, we can never actually build the whole tree

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure

Fringe = holds states we still
can explore

initialize the search tree using the initial state of problem

l(H)l) (I()

. if there are no candidates for expansion then return failure
Strategy =which nodedo | @ leaf node for expansion according to strategy
choose from my fringe? if The node contains a goal state then return the corresponding solution

else expand the node and add the resulting nodes to the search tree
Many different possibilities: end
First one we added to fringe, =

Last one we added to fringe, \Detailed sseudocods is
Arandom one? Important ideas: in the book

* Fringe (leaves of partially-expanded tree)

» Expansion (adding successors of a leaf node)

= Exploration strategy

which fringe node to expand next?

Review: Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a queue - FIFO

Review: Breadth First Search

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q.f,p,q,f,q,c,G)

Search

Tiers

It doesn’t make sense to try exploring a node our
search has already visited
o Makes our fringe hold extra data we don't need to

explore
o Could possibly lead to infinite loops with cycles

Fix: Keep a Set of all the states we have already
visited
o Only add nodes to the fringe that we haven't visited
yet
Will assume throughout the rest of presentation
that we have created this visited Set

Don't Explore the Same Node Twice!

Will explore A,B,C,A,B,C, ...

BFS Exercise:

What order are nodes explored in?

Assume ties are settled by alphabetical
order, C will be added to fringe before E In
this example, assume search ends when we

see END

N\

Correct Answer:
Start,C, E, B, D, A, F, End

Current node: fringe

Start: [C, E]
C:[E, B, D]
E:[B, D, A]
B: [D, A]

D: [A]

A: [F]

F: [End]

BFS Pseudo-code

e Addthe start state to the queue
e While the queue is not empty
0 Remove the next state from the queue and set as current

o Mark the current state as visited
O Ifcurrent state is the goal

m returnthe path tothe goal
o otherwise

m for each successor state
e if successor has not been marked as visited
o save path and add the successor to the queue

\ Let's Implement BFS in Friends.java

Depth-First-Search (DFS)

e Same application of the general Tree Search but our STRATEGY changes
e New Strategy : Expand the DEEPEST NODE FIRST
e Fringeisimplemented as a Stack instead

o The most recently discovered node will be expanded next

DFS Exercise;

What order are nodes explored in?
Assume ties are settled by alphabetical

order, C will be added to fringe before E in
this example, assume search ends when we

see END

Correct Answer: bot [1, 2, 3, 4, 5] top
\ Start, E, A, F, End

Current node: fringe
Start: [C, E]
E:[C, A]

A: [C, F]

F: [C, End]

DFS Pseudo-code

e Pushthe start state to the stack
e While the stack is not empty

O Pop the next state from the stack and set as current
Mark the current state as visited

@)

O

If current state is the goal
m returnthe pathto the goal
otherwise
m foreachsuccessor state
e if successor has not been marked as visited
o save path and push successor to the stack

(@)

Maze Generation

e Setarandom cell as the current cell

Maze Generation

e Setarandom cell as the current cell
e Checkits neighbors
o Pick arandom neighbor we
haven't gone to yet

Maze Generation

e Setarandom cell as the current cell
e Checkits neighbors
o Pick arandom neighbor we
haven't gone to yet

Maze Generation

o
o
_

e Setarandom cell as the current cell
e Checkits neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them

Maze Generation

°
¢
_

e Setarandom cell as the current cell
e Checkits neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them
o Setnew celltocurrent

Maze Generation

e Setarandom cell as the current cell

e Checkits neighbors
o Pick arandom neighbor we
haven't gone to yet

o Remove the wall between them
Set new cell to current

O
o Repeat until we reach a dead
end

Maze Generation

(@)

e Setarandom cell as the current cell
e Checkits neighbors

Pick a random neighbor we
haven't gone to yet

Remove the wall between them
Set new cell to current

Repeat until we reach a dead
end

Maze Generation

(@)

e Setarandom cell as the current cell
e Checkits neighbors

Pick a random neighbor we
haven't gone to yet

Remove the wall between them
Set new cell to current

Repeat until we reach a dead
end

Maze Generation

Set a random cell as the current cell
Check its neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them
Set new cell to current
o Repeat until we reach a dead
end
At dead end, backtrack until we find a
cell with a neighbor we haven't gone to
yet.

Maze Generation

Set a random cell as the current cell
Check its neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them
Set new cell to current
o Repeat until we reach a dead
end
At dead end, backtrack until we find a
cell with a neighbor we haven't gone to
yet.

Maze Generation

Set a random cell as the current cell
Check its neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them
Set new cell to current
o Repeat until we reach a dead
end
At dead end, backtrack until we find a
cell with a neighbor we haven't gone to
yet.
Repeat from step 2 until we visit every
node

Maze Generation

Set a random cell as the current cell
Check its neighbors
o Pick arandom neighbor we
haven't gone to yet
o Remove the wall between them
Set new cell to current
o Repeat until we reach a dead
end
At dead end, backtrack until we find a
cell with a neighbor we haven't gone to
yet.
Repeat from step 2 until we visit every
node

\ Maze Generation

e Wow! What a fun maze!

Maze Generation Pseudo-code

e Choose aninitial cell, mark it as visited and push it to the stack

e While the stack is not empty
o Popacell fromthe stack and mark it as the current cell
o Ifthe current cell has any neighbors which have not been visited
m Pushthe current cell to the stack
m Randomly choose one of the unvisited neighbors
m Remove the wall between the current cell and the chosen cell
m Mark the chosen cell as visited and push it to the stack

Dijkstra’'s Algorithm

e Verysimilar to Breadth First Search, but the strategy is slightly different
e New Strategy : Expand the cheapest shallow node first

o Each node has a cost

o Choose node with the least-cost path to it

o Expanded nodes include previous node's cost
e Uniform Cost Search

o Variation of Dijkstra's

o Insert nodes into fringe only when encountered

UCS Example (using $ as cost)

Current node: fringe
Start: [B ($1), C ($2)]

choose B for $1 and expand nodes

(include cost of B;e.g. D = $2 + $1)
B:[C ($2),D ($3)]

choose C for $2 and expand nodes
C:[D($3),End ($6)]

choose D for $3 and expand nodes

D: [End ($4), End ($6)]
choose End for $4 - this is the
cheapest cost path!

UCS Exercise:
What order are the nodes explored in?
Ties are settled alphabetically.

Correct Answer:
Start-B-C-A-D-E-G-F-End

Current node: fringe
Start:[B (1), C (2)]
B:[C(2), E(5)]
C:[A(3),D(4),
A:[D (4), E(5)]
D:[E (5), G (5)]

E:[G (5),F (6), End (7)]
G:[F (6), End (7), End(8)]
F:[End (7), End(8)]

E (5)]

),D
),
)
),
),
(

