
HASHING

Runtimes of common Set operations

Data Structure contains(element) add(element) remove(element)

Unsorted ArrayList

Unsorted LinkedList

Binary Search Tree

Arrays

■ Pros: O(1) time to set() or get() at a given index

■ Cons: O(n) time to see if an element is in the array

What if we knew what index an object would be at?

Hash Function

■ A function that maps any input deterministically to some output

– If two objects are “equal”, their hash function must produce the same value

■ We are concerned specifically with a hash function that maps Object -> int

■ All Java Objects have a hashCode() method!

"Spongebob".hashCode() == 907493499

"Patrick".hashCode() == 873506786

"Squidward".hashCode() == -759989618

Hash Table

■ Array where we store elements at their hashed indexes

String[] hashTable = new String[10]

index 0 1 2 3 4 5 6 7 8 9

value null null null null null null null null null null

Where should these Strings go?

"Spongebob".hashCode() == 907493499

"Patrick".hashCode() == 873506786

"Squidward".hashCode() == -759989618

int index = Math.abs(hashcode % hashTable.length)

Hash Table

public static int hashIndex(E element) {

return Math.abs(element.hashCode() % hashTable.length);

}

contains(element):return hashTable[hashIndex(element)] != null

add(element) :hashTable[hashIndex(element)] = element

remove(element) :hashTable[hashIndex(element)] = null

What issues do we have?

Two elements might hash to the same spot!

This is called a collision

What Makes a Hash
Function Good?

■ To avoid collisions, different elements should hash to

different values

– We want the elements to be evenly spread out

– We want the hash function to appear random

Rank these Hash Functions!

What Makes a Hash Function Good?
Java’s String hashCode()

What issues do we have?

Two elements might hash to the same spot!

This is called a collision

We can only have 10 elements!

Separate Chaining

■ Solve collisions and running out of space by storing a list at each index!

– contains/add/remove must now traverse lists

index 0 1 2 3 4 5 6 7 8 9

value

Morty

Beth

Rick Jerry

Is this really O(1) though?

How long do you expect the average chain to be if there are 30
elements in a hash table of size 10?

As long as we limit the length of each chain to a constant

number, it will be O(1)!

Load Factor : (# of elements in hash table) / (length of hash

table)

Rehashing

■ Load Factor : (# of elements in hash table) / (length of hash table)

– The length of the average chain

■ Rehashing : Once the load factor becomes too high, we hash everything again into a

bigger array

– Usually rehash when load factor is around 0.75

– Why can’t we copy into the new array?

This is Amortized O(1)

