HASHI

NG

Runtimes of common Set operations

Data Structure contains(element) add(element) remove(element)

Unsorted ArrayList

Unsorted LinkedList

Binary Search Tree

Arrays

m Pros: O(1) time to set() or get() at a given index

m Cons: O(n) time to see if an element is in the array

What if we knew what index an object would be at?

Hash Function

m A function that maps any input deterministically to some output
- If two objects are “equal”, their hash function must produce the same value

m We are concerned specifically with a hash function that maps Object -> int

m All Java Objects have a hashCode() method!

"Spongebob" .hashCode () == 907493499
"Patrick".hashCode () == 873506786
"Squidward" .hashCode () == -759989618

Hash Table

m Array where we store elements at their hashed indexes

String[] hashTable = new String[10]

index [0 1]2 13 14 |5 16 7 (8 |9

value null null null null null null null null null null

Where should these Strings go?

"Spongebob" .hashCode () == 907493499
"Patrick" .hashCode () == 8735006786
"Squidward" .hashCode () == -759989618

int index = Math.abs (hashcode % hashTable.length)

Hash Table

public static int hashIndex (E element) ({

[e)

return Math.abs (element.hashCode () % hashTable.length);

contains (element) :return hashTable[hashIndex (element)] != null
add (element) :hashTable|[hashIndex (element)] = element

remove (element) :hashTable[hashIndex (element)] = null

What issues do we have?

Two elements might hash to the same spot!
This is called a collision

What Makes a Hash
Function Good?

m To avoid collisions, different elements should hash to
different values

- We want the elements to be evenly spread out
- We want the hash function to appear random

Rank these Hash Functions!

// Returns the length of the given string
public int hash(String s) {
return s.length();

}

// Returns ©
public int hash(String s) {
return 0;

}

// Returns the sum of the ascii values of
// the characters in the given string
public int hash(String s) {
int hash = 0;
for (int i = @; i < s.length(); i++) {
hash += (int) s.charAt(i);
}

return hash;

}

// Returns a random number between @ and
// 100000
public int hash(String s) {

Random r = new Random();

return r.nextInt(100000);

¥

What Makes a Hash Function Good?
Java’s String hashCode()

public int hashCode() {
int h = hash;
if (h == 0 && value.length > 9) {
char val[] = value;

for (int i = @; i < value.length; i++) {
h=31%*h+ val[i];

}

hash = h;
}
return h;

What issues do we have?

Two elements might hash to the same spot!
This is called a collision

We can only have 10 elements!

Separate Chaining

m Solve collisions and running out of space by storing a list at each index!
- contains/add/remove must now traverse lists

Is this really O(1) though?

How long do you expect the average chain to be if there are 30
elements in a hash table of size 107

Load Factor : (# of elements in hash table) / (length of hash
table)

As long as we limit the length of each chain to a constant
number, it will be O(1)!

Rehashing

m Load Factor : (# of elements in hash table) / (length of hash table)
- The length of the average chain

m Rehashing : Once the load factor becomes too high, we hash everything again into a
bigger array

- Usually rehash when load factor is around 0.75
- Why can’t we copy into the new array?

This is Amortized O(1)

