
1

Exercise: Dice roll sum
 Write a method diceSum similar to diceRoll, but it also

accepts a desired sum and prints only arrangements that
add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);

[1, 1, 5]

[1, 2, 4]

[1, 3, 3]

[1, 4, 2]

[1, 5, 1]

[2, 1, 4]

[2, 2, 3]

[2, 3, 2]

[2, 4, 1]

[3, 1, 3]

[3, 2, 2]

[3, 3, 1]

[4, 1, 2]

[4, 2, 1]

[5, 1, 1]

[1, 6]

[2, 5]

[3, 4]

[4, 3]

[5, 2]

[6, 1]

2

Consider all paths?

chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

3

Optimizations
 We need not visit every branch of the decision tree.

 Some branches are clearly not going to lead to success.

 We can preemptively stop, or prune, these branches.

 Inefficiencies in our dice sum algorithm:

 Sometimes the current goal is too low.

 (Even rolling 1 for all remaining dice would exceed the sum.)

 Sometimes the current goal is too high.

 (Even rolling 6 for all remaining dice would not reach the sum.)

4

New decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

5

The "8 Queens" problem
 Consider the problem of trying to place 8 queens on a

chess board such that no queen can attack another queen.

 What are the "choices"?

 How do we "make" or
"un-make" a choice?

 How do we know when
to stop?

Q

Q

Q

Q

Q

Q

Q

Q

6

Naive algorithm
 for (each square on board):

 Place a queen there.

 Try to place the rest
of the queens.

 Un-place the queen.

 How large is the
solution space for
this algorithm?

 64 * 63 * 62 * 61 *

60 * 59 * 58 * 57

1 2 3 4 5 6 7 8

1 Q

2

3 ...

4

5

6

7

8

7

Better algorithm idea
 Observation: In a working

solution, exactly 1 queen
must appear in each
row and in
each column.

 Redefine a "choice"
to be valid placement
of a queen in a
particular column.

 How large is the
solution space now?

 8 * 8 * 8 * 8 *

8 * 8 * 8 * 8

1 2 3 4 5 6 7 8

1 Q

2

3 Q ...

4 ...

5 Q

6

7

8

8

Exercise
 Suppose we have a Board class with these methods:

 Write a method solve that accepts a Board as a parameter

and tries to place 8 queens on it safely.

 Your method should find all solutions.

Method/Constructor Description

public Board(int size) construct empty board

public int size() returns the length/width
of the board

public boolean safe(int row, int column) true if queen can be

safely placed here

public void place(int row, int column) place queen here

public void remove(int row, int column) remove queen from here

public void print() displays the board

9

Recall: Backtracking
A general pseudo-code algorithm for backtracking problems:

Explore(choices):

 if there are no more choices to make: stop.

 else, for each available choice C:

 Choose C.

 Explore the remaining choices.

 Un-choose C, if necessary. (backtrack!)

