
2

Exercise: fourAB
 Write a method fourAB that prints out all strings of length

4 composed only of a’s and b’s

 Example Output

aaaa baaa

aaab baab

aaba baba

aabb babb

abaa bbaa

abab bbab

abba bbba

abbb bbbb

3

Decision Tree

a

aa

aaa

aaab

aab

aaba aabbaaaa

ab
…

b
…

4

Exercise: Dice rolls
 Write a method diceRoll that accepts an integer

parameter representing a number of 6-sided dice to roll,
and output all possible arrangements of values that could
appear on the dice.

diceRoll(2); diceRoll(3);

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[1, 1, 1]

[1, 1, 2]

[1, 1, 3]

[1, 1, 4]

[1, 1, 5]

[1, 1, 6]

[1, 2, 1]

[1, 2, 2]

...

[6, 6, 4]

[6, 6, 5]

[6, 6, 6]

6

A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die
...

......

...

... ...

... ...

10

Backtracking
 backtracking: Finding solution(s) by trying partial

solutions and then abandoning them if they are not
suitable.

 a "brute force" algorithmic technique (tries all paths)

 often implemented recursively

Applications:

 producing all permutations of a set of values

 parsing languages

 games: anagrams, crosswords, word jumbles, 8 queens

 combinatorics and logic programming

12

Backtracking strategies
 When solving a backtracking problem, ask these questions:

 What are the "choices" in this problem?

 What is the "base case"? (How do I know when I'm out of
choices?)

 How do I "make" a choice?

 Do I need to create additional variables to remember my choices?

 Do I need to modify the values of existing variables?

 How do I explore the rest of the choices?

 Do I need to remove the made choice from the list of choices?

 Once I'm done exploring, what should I do?

 How do I "un-make" a choice?

13

Exercise: Dice roll sum
 Write a method diceSum similar to diceRoll, but it also

accepts a desired sum and prints only arrangements that
add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);

[1, 1, 5]

[1, 2, 4]

[1, 3, 3]

[1, 4, 2]

[1, 5, 1]

[2, 1, 4]

[2, 2, 3]

[2, 3, 2]

[2, 4, 1]

[3, 1, 3]

[3, 2, 2]

[3, 3, 1]

[4, 1, 2]

[4, 2, 1]

[5, 1, 1]

[1, 6]

[2, 5]

[3, 4]

[4, 3]

[5, 2]

[6, 1]

14

Consider all paths?

chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

15

Optimizations
 We need not visit every branch of the decision tree.

 Some branches are clearly not going to lead to success.

 We can preemptively stop, or prune, these branches.

 Inefficiencies in our dice sum algorithm:

 Sometimes the current sum is already too high.

 (Even rolling 1 for all remaining dice would exceed the sum.)

 Sometimes the current sum is already too low.

 (Even rolling 6 for all remaining dice would not reach the sum.)

 When finished, the code must compute the sum every time.

 (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)

16

New decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

