Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1




Recursion

recursion: The definition of an operation in terms of itself.

Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

recursive programming: Writing methods that call
themselves to solve problems recursively.

An equally powerful substitute for iteration (loops)
Particularly well-suited to solving certain types of problems



D o
Getting down stairs

. Ty
- = [
. S
e 2T e \
1 + ‘

* Need to know two things:
» Getting down one stair
» Recognizing the bottom

e Most code will look like:

if (simplest case) {
COMPUEE e WV B IR O OIE)

} else {
divide into similar subproblem(s)
solve each subproblem recursively
assemble the overall solution




Recursion and cases

* Every recursive algorithm involves at least 2 cases:

base case: A simple occurrence that can be answered
directly.

recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

A crucial part of recursive programming is identifying these
cases.



g

Recursion vs Iteration

publdvcvstaticaveordiwritestarsitint n) v
while (n > 0) {
Sy SEem oty prink (I
Ny
}
Systems outaprintlnit)y;

Pl e s aki e o bdi W e SEAE ST TR S|
Bl SO
SiciEem voniE DR
} else {
Savisel=i oo TblER o ol i

writeStars(n - 1);

17

=



Recursion vs Iteration

publdvcvstaticaveordiwritestarsitint n) v
AR Y S G R e O
System.out.print ("*");
Ny
}

System.out.println(); // base case. assert: n ==

Pl e s aki e o bdi W e SEAE ST TR S|
if (n == 0) {
System.out.println(); // base case
} else {
S S e O Y DRI s

N N Vo e 1 A A P eV e EO

18



Recursion vs Iteration

publdvcvstaticaveordiwritestarsitint n) v
while (n > 0) { // "recursive” case
System.out.print ("*"); // small piece of problem
N==;
}
System.out.println();

Pl e s aki e o bdi W e SEAE ST TR S|
if (n == 0) {
SV SO D P nYG )
} else { // "recursive" case. assert: n > 0
System.out.print ("*"); // small piece of problem

N N Vo e 1 A A P eV e EO

19



dfégggﬁﬁ/f’flz——
Recursion vs Iteration

publdvcvstaticaveordiwritestarsitint n) v

whib e Vv A by i eer aipe b aara s
System.out.print ("*");
n--; // make the problem smaller

}
Sysien: outiprintlant)y;

Pl e s aki e o bdi W e SEAE ST TR S|
e
SV SO D P nYG )
} else { // "recursive" case. assert: n > 0
S S e O Y DRI s

writeStars(n - 1); // make the problem smaller

20



Exercise

* Write a recursive method reverselLines that accepts a file
Scanner and prints the lines of the file in reverse order.

Example input file:

I have eaten
the plums
that were in

the icebox

What are the cases to consider?

Expected console output:

the icebox
that were 1n
the plums

I have eaten

- How can we solve a small part of the problem at a time?
« What is a file that is very easy to reverse?

25



Ry

oSBT g RS

” Tracing our algorithm

e call stack: The method invocations currently running

reverselines (new Scanner ("poem.txt"));

1f (input.hasNextLine()) {

Ct++r1inea 1ine = 1inrmiit novtTaine ()

public static void reverselines (Scanner input) {

"T haxra aatan

1if (input.hasNextLine()) {

[alF S 1 = P B . sz T o an [\ o

public static void reverselines (Scanner input) {

Wdeln n amn T aaen =~ IV

if (input.hasNextLine()) {

S+ +r1ina 1line = 1inrniit nevtTaine ()

public static void rgverseLines(Scanner input) {

"+hat wara In"

if (input.hasNextLine()) {

C+ 9 e lanrmn~ — 1 nriit neasz+T 9 nes L) o

public static void reversellnes (Scanner input) {

"dehhaAa am~alhaAase!

if (input.hasNextLine ()) { // false

}

public static void reverselilnes (Scanner input) {

1L IIAavT CAlLTII
the plums
that were in
the icebox

CIIT 1T CTIOUUAX
that were in
the plums

I have eaten

28



