
Building Java Programs

Chapter 13

binary search and complexity

reading: 13.1-13.2

2

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

3

Runtime Efficiency (13.2)
 efficiency: measure of computing resources used by code.

 can be relative to speed (time), memory (space), etc.

 most commonly refers to run time

 We want to be able to compare different algorithms to see
which is more efficient

4

Efficiency Try 1
 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 0ms, sum2 took 0ms

n = 10,000,000 sum1 took 10ms, sum2 took 0ms

n = 100,000,000 sum1 took 47ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 784ms, sum2 took 0ms

 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 8ms, sum2 took 0ms

n = 100,000,000 sum1 took 43ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 804ms, sum2 took 0ms

 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 3ms, sum2 took 0ms

n = 100,000,000 sum1 took 121ms, sum2 took 0ms

n = 2,147,483,647 sum1 took1570ms, sum2 took 0ms

 Downsides

 Different computers give different run times

 The same computer gives different results!!! D:<

5

Efficiency – Try 2
 Let’s count number of “steps” our algorithm takes to run

 Assume the following:

 Any single Java statement takes same amount of time to run.

 int x = 5;

 boolean b = (5 + 1 * 2) < 15 + 3;

 System.out.println(“Hello”);

 A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

 A method call's runtime is measured by the total runtime of
the statements inside the method's body.

6

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {

statement4;
}

for (int i = 1; i <= N; i++) {

statement5;
statement6;
statement7;

}

Efficiency examples

3

N

3N

4N + 3

7

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {

statement2;
statement3;
statement4;
statement5;

}

 How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

8

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

N

1

1

1

N + 2

1

9

Visualizing Difference

10

Algorithm growth rates (13.2)

 We measure runtime in proportion to the input data size, N.

 growth rate: Change in runtime as N changes.

 Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.

 Consider the runtime when N is extremely large .

 We ignore constants like 25 because they are tiny next to N.

 The highest-order term (N3) dominates the overall runtime.

 We say that this algorithm runs "on the order of" N3.

 or O(N3) for short ("Big-Oh of N cubed")

11

Complexity classes
 complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

12

Complexity classes
 complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Input
Size

O(1)
steps

O(N)
steps

O(N^2)
steps

O(N^3)
steps

X 1 X X^2 X^3

2X

3X

13

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

14

Sequential search
 sequential search: Locates a target value in an array /

list by examining each element from start to finish. Used in
indexOf.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

 What is a value we could search for that would be “fast”

 The array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

15

Binary search (13.1)
 binary search: Locates a target value in a sorted array or

list by successively eliminating half of the array from
consideration.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

16

Sequential search
 What is its complexity class?

public int indexOf(int value) {

for (int i = 0; i < size; i++) {

if (elementData[i] == value) {

return i;

}

}

return -1; // not found

}

 On average, "only" N/2 elements are visited

 1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

17

Binary search
 binary search successively eliminates half of the

elements.

 Algorithm: Examine the middle element of the array.
 If it is too big, eliminate the right half of the array and repeat.

 If it is too small, eliminate the left half of the array and repeat.

 Else it is the value we're searching for, so stop.

 Which indexes does the algorithm examine to find value 42?

 What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

18

Binary search runtime
 For an array of size N, it eliminates ½ until 1 element

remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

 How many divisions does it take?

 Think of it from the other direction:

 How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

 Call this number of multiplications "x".

2x= N

x = log2 N

 Binary search is in the logarithmic complexity class.

