Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2
Sum this up for me

• Let’s write a method to calculate the sum from 1 to some n

  ```java
  public static int sum1(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
      sum += i;
    }
    return sum;
  }
  ```

• Gauss also has a way of solving this

  ```java
  public static int sum2(int n) {
    return n * (n + 1) / 2;
  }
  ```

• Which one is more efficient?
Runtime Efficiency (13.2)

- **efficiency**: measure of computing resources used by code.
 - can be relative to speed (time), memory (space), etc.
 - most commonly refers to run time
- We want to be able to compare different algorithms to see which is more efficient
Efficiency Try 1

- Let’s time the methods!

\[
\begin{align*}
n = 1 & \quad \text{sum1 took 0ms, sum2 took 0ms} \\
n = 5 & \quad \text{sum1 took 0ms, sum2 took 0ms} \\
n = 10 & \quad \text{sum1 took 0ms, sum2 took 0ms} \\
n = 100 & \quad \text{sum1 took 0ms, sum2 took 0ms} \\
n = 1,000 & \quad \text{sum1 took 1ms, sum2 took 0ms} \\
n = 10,000,000 & \quad \text{sum1 took 18ms, sum2 took 0ms} \\
n = 100,000,000 & \quad \text{sum1 took 147ms, sum2 took 0ms} \\
n = 2,147,483,647 & \quad \text{sum1 took 7680ms, sum2 took 0ms}
\end{align*}
\]

- Downsides
 - Different computers give different run times
 - The same computer gives different results!!! D:<
Efficiency – Try 2

• Let’s count number of “steps” our algorithm takes to run
• Assume the following:
 • Any single Java statement takes same amount of time to run.
 • `int x = 5;`
 • `boolean b = (5 + 1 * 2) < 15 + 3;`
 • `System.out.println("Hello");`
 • A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
 • A method call's runtime is measured by the total runtime of the statements inside the method's body.
Efficiency examples

\[
\begin{align*}
\text{statement1;} \\
\text{statement2;} \\
\text{statement3;} \\
\end{align*}
\]

\[
\begin{align*}
\text{for (int } i = 1; i <= N; i++) & \text{ } \{} \\
& \text{statement4;} \\
\text{\}} \\
\end{align*}
\]

\[
\begin{align*}
\text{for (int } i = 1; i <= N; i++) & \text{ } \{} \\
& \text{statement5;} \\
& \text{statement6;} \\
& \text{statement7;} \\
\text{\}}
\end{align*}
\]
Efficiency examples 2

for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

- How many statements will execute if N = 10? If N = 1000?
Sum this up for me

- Let’s write a method to calculate the sum from 1 to some \(n \)
  ```java
  public static int sum1(int n) {
      int sum = 0;
      for (int i = 1; i <= n; i++) {
          sum += i;
      }
      return sum;
  }
  ```

- Gauss also has a way of solving this
  ```java
  public static int sum2(int n) {
      return n * (n + 1) / 2;
  }
  ```

- Which one is more efficient?
Visualizing Difference

Comparing sum1 and sum2

Number of steps vs n
Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, \(N \).
 - **growth rate**: Change in runtime as \(N \) changes.

- Say an algorithm runs \(0.4N^3 + 25N^2 + 8N + 17 \) statements.
 - Consider the runtime when \(N \) is *extremely large*.
 - We ignore constants like 25 because they are tiny next to \(N \).
 - The highest-order term \((N^3) \) dominates the overall runtime.

- We say that this algorithm runs "on the order of" \(N^3 \).
- or \(O(N^3) \) for short ("Big-Oh of \(N \) cubed")
Complexity classes

- **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

<table>
<thead>
<tr>
<th>Class</th>
<th>Big-Oh</th>
<th>If you double N, ...</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>O(1)</td>
<td>unchanged</td>
<td>10ms</td>
</tr>
<tr>
<td>logarithmic</td>
<td>O(log₂ N)</td>
<td>increases slightly</td>
<td>175ms</td>
</tr>
<tr>
<td>linear</td>
<td>O(N)</td>
<td>doubles</td>
<td>3.2 sec</td>
</tr>
<tr>
<td>log-linear</td>
<td>O(N log₂ N)</td>
<td>slightly more than doubles</td>
<td>6 sec</td>
</tr>
<tr>
<td>quadratic</td>
<td>O(N²)</td>
<td>quadruples</td>
<td>1 min 42 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>O(N³)</td>
<td>multiplies by 8</td>
<td>55 min</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>exponential</td>
<td>O(2ᴺ)</td>
<td>multiplies drastically</td>
<td>5 * 10^61 years</td>
</tr>
</tbody>
</table>
Complexity classes

- **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size \(N \).

<table>
<thead>
<tr>
<th>Input Size</th>
<th>(O(1)) steps</th>
<th>(O(N)) steps</th>
<th>(O(N^2)) steps</th>
<th>(O(N^3)) steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>1</td>
<td>(X)</td>
<td>(X^2)</td>
<td>(X^3)</td>
</tr>
<tr>
<td>(2X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complexity classes

Sequential search

- **sequential search**: Locates a target value in an array / list by examining each element from start to finish. Used in `indexOf`.

- How many elements will it need to examine?

- Example: Searching the array below for the value **42**:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

- What is a value we could search for that would be “fast”

- The array is sorted. Could we take advantage of this?
Binary search (13.1)

- **binary search**: Locates a target value in a *sorted* array or list by successively eliminating half of the array from consideration.

 - How many elements will it need to examine?
 - Example: Searching the array below for the value 42:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

The table shows the array with values from -4 to 103. The search process involves comparing the target value (42) with the middle value of the array, which is 36 in this case. Since 42 is greater than 36, the search continues in the upper half of the array. This process of elimination continues until the target value is found or the search space is exhausted.
Sequential search

- What is its complexity class?

```java
class ArraySearch {
  public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
      if (elementData[i] == value) {
        return i;
      }
    }
    return -1; // not found
  }
}
```

- On average, "only" N/2 elements are visited
 - 1/2 is a constant that can be ignored
Binary search

- **binary search** successively eliminates half of the elements.

 - **Algorithm:** Examine the middle element of the array.
 - If it is too big, eliminate the right half of the array and repeat.
 - If it is too small, eliminate the left half of the array and repeat.
 - Else it is the value we're searching for, so stop.

- Which indexes does the algorithm examine to find value 42?
- What is the runtime complexity class of binary search?

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

min

mid

max
Binary search runtime

- For an array of size N, it eliminates ½ until 1 element remains.
 \[N, \frac{N}{2}, \frac{N}{4}, \frac{N}{8}, \ldots, 4, 2, 1 \]
 - How many divisions does it take?

- Think of it from the other direction:
 - How many times do I have to multiply by 2 to reach N?
 \[1, 2, 4, 8, \ldots, \frac{N}{4}, \frac{N}{2}, N \]
 - Call this number of multiplications "x".

 \[2^x = N \]
 \[x = \log_2 N \]

- Binary search is in the **logarithmic** complexity class.