
Building Java Programs

Chapter 13

binary search and complexity

reading: 13.1-13.2

2

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

3

Runtime Efficiency (13.2)
 efficiency: measure of computing resources used by code.

 can be relative to speed (time), memory (space), etc.

 most commonly refers to run time

 We want to be able to compare different algorithms to see
which is more efficient

4

Efficiency Try 1
 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 0ms, sum2 took 0ms

n = 10,000,000 sum1 took 10ms, sum2 took 0ms

n = 100,000,000 sum1 took 47ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 784ms, sum2 took 0ms

 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 8ms, sum2 took 0ms

n = 100,000,000 sum1 took 43ms, sum2 took 0ms

n = 2,147,483,647 sum1 took 804ms, sum2 took 0ms

 Let’s time the methods!

n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms

n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms

n = 1,000 sum1 took 1ms, sum2 took 0ms

n = 10,000,000 sum1 took 3ms, sum2 took 0ms

n = 100,000,000 sum1 took 121ms, sum2 took 0ms

n = 2,147,483,647 sum1 took1570ms, sum2 took 0ms

 Downsides

 Different computers give different run times

 The same computer gives different results!!! D:<

5

Efficiency – Try 2
 Let’s count number of “steps” our algorithm takes to run

 Assume the following:

 Any single Java statement takes same amount of time to run.

 int x = 5;

 boolean b = (5 + 1 * 2) < 15 + 3;

 System.out.println(“Hello”);

 A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

 A method call's runtime is measured by the total runtime of
the statements inside the method's body.

6

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {

statement4;
}

for (int i = 1; i <= N; i++) {

statement5;
statement6;
statement7;

}

Efficiency examples

3

N

3N

4N + 3

7

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {

statement1;
}

}

for (int i = 1; i <= N; i++) {

statement2;
statement3;
statement4;
statement5;

}

 How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

8

Sum this up for me
 Let’s write a method to calculate the sum from 1 to some n
public static int sum1(int n) {

int sum = 0;

for (int i = 1; i <= n; i++) {

sum += i;

}

return sum;

}

 Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;

}

 Which one is more efficient?

N

1

1

1

N + 2

1

9

Visualizing Difference

10

Algorithm growth rates (13.2)

 We measure runtime in proportion to the input data size, N.

 growth rate: Change in runtime as N changes.

 Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.

 Consider the runtime when N is extremely large .

 We ignore constants like 25 because they are tiny next to N.

 The highest-order term (N3) dominates the overall runtime.

 We say that this algorithm runs "on the order of" N3.

 or O(N3) for short ("Big-Oh of N cubed")

11

Complexity classes
 complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

12

Complexity classes
 complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Input
Size

O(1)
steps

O(N)
steps

O(N^2)
steps

O(N^3)
steps

X 1 X X^2 X^3

2X

3X

13

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

14

Sequential search
 sequential search: Locates a target value in an array /

list by examining each element from start to finish. Used in
indexOf.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

 What is a value we could search for that would be “fast”

 The array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

15

Binary search (13.1)
 binary search: Locates a target value in a sorted array or

list by successively eliminating half of the array from
consideration.

 How many elements will it need to examine?

 Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

16

Sequential search
 What is its complexity class?

public int indexOf(int value) {

for (int i = 0; i < size; i++) {

if (elementData[i] == value) {

return i;

}

}

return -1; // not found

}

 On average, "only" N/2 elements are visited

 1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

17

Binary search
 binary search successively eliminates half of the

elements.

 Algorithm: Examine the middle element of the array.
 If it is too big, eliminate the right half of the array and repeat.

 If it is too small, eliminate the left half of the array and repeat.

 Else it is the value we're searching for, so stop.

 Which indexes does the algorithm examine to find value 42?

 What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

18

Binary search runtime
 For an array of size N, it eliminates ½ until 1 element

remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

 How many divisions does it take?

 Think of it from the other direction:

 How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

 Call this number of multiplications "x".

2x= N

x = log2 N

 Binary search is in the logarithmic complexity class.

