
CSE 143: Computer Programming II

This assignment will assess your mastery of the following objectives:

• Implement a well-designed Java class to meet a given specification.
• Implement, manipulate, and travese a binary tree.
• Follow prescribed conventions for code quality, documentation, and readability.

Overview: The Game of 20 Questions
Twenty Questions is a guessing game in which one player chooses a secret object and the other player
asks yes/no questions to try to idenfity the chosen object. In our version, the human will be the chooser
and begin a round by choosing an object. The computer will be the guesser and attempt to guess that
object by asking a series of yes/no questions until it thinks it knows the answer. Then, the computer
makes a guess; if its guess is correct, the computer wins, and otherwise the human player wins. If the
computer loses, it will add the chosen object to its knowledge base so it will be able to guess it the next
time it plays.

Program Behavior
In this assessment, you will create a class named QuestionsGame to represent the computer’s tree of
yes/no questions and answers for playing games of 20 Questions. You will also create a public class named
QuestionNode to represent the nodes of the tree. You are provided with a client QuestionMain.java
that handles user interaction and calls your methods from QuestionsGame to play the game.

QuestionNode
The contents of the QuestionNode class are up to you. Though we have studied trees of ints, your
nodes should be specific to solving this problem. Your QuestionNode class should have at least one
constructor used by your tree. Don’t include constructors that are not actually used in your program.
Your node’s fields must be public. QuestionNode should not contain any actual game logic. It should
only represent a single node of the tree. For reference, you can look at the AssassinNode class from A3
or the IntTreeNode class from lecture.

QuestionsGame
This class represents a game of 20 Questions. It stores a binary tree whose nodes represent questions
and answers. (Every node’s data is a string representing the text of the question or answer.) Note that
even though the name of the game is “20 questions”, the computer will not be limited to only twenty ;
the tree may have a larger height.

�

You should not
limit the size
or shape of the
tree in any way!The leaves of the tree represent possible answers (guesses) that the computer might make. All the other

nodes represent questions that the computer will ask to narrow the possibilities. The left branch indicates
the next question the computer asks if the answer to the current question is yes, and the right branch is
the next question if the answer is no. The game is played by starting at the root and asking the questions
at each node, travelling down the the tree based on the user’s answer. Once a leaf node is reached, the
computer will ask if that answer is the correct one. Page 3 walks through a full example of a game.

In addition to adding questions to the tree as games are played, your class will also be able to read a
pre-existing tree from a text file, or write the current tree out to a text file to save for later. These files
will have a specific format that you must follow for both reading and writing (see below).

Page 1 of 6

Summer 2021
Take-home Assessment 6: 20 Questions due August 12, 2021 11:59pm



Your QuestionsGame class should have the following constructor:

public QuestionsGame()

This constructor should initialize a new QuestionsGame object with a single leaf node representing
the object “computer”.

Your QuestionsGame class should also implement the following public methods:

public void read(Scanner input)

This method will be called if the client wants to replace the current tree by reading another tree
from a file. Your method will be passed a Scanner that is linked to the file and should replace the
current tree with a new tree using the information in the file. Assume the file is legal and in standard
format (see below). Make sure to read entire lines of input using the nextLine method.

public void write(PrintStream output)

This method should store the current questions tree to an output file represented by the given
PrintStream. This method can be used to later play another game with the computer using
questions from this one. The file should be written using the standard format (see below).

public void askQuestions()

This method should use the current question tree to play one complete guessing game with the user,
asking yes/no questions until reaching an answer object to guess. A game begins with the root node
of the tree and ends upon reaching an answer leaf node.
If the computer wins the game, this method should print a message saying so.
Otherwise, this method should ask the user for the following:

• what object they were thinking of,
• a question to distinguish that object from the player’s guess, and
• whether the player’s object is the yes or no answer for that question.

public boolean yesTo(String prompt)

This method asks the given question until the user types “y” or “n”. Returns true if “y”, false if “n”.
This method is provided for you and should not be modified!

Implementation Guidelines
User Input: Yes and No
At various points in this assignment, you will need to get a yes or no answer from the user. You must
construct a single console Scanner attached to System.in that you store in a data field called
console and use throughout your class. All input read from this Scanner should use the nextLine
method.

To help with asking these questions, you are provided a method called yesTo. This method assumes
there is a field called console that has been initialized with a Scanner as decribed above. You should
include this method without modification in your QuestionsGame class and use it whenever you ask the
user to answer a yes/no question. The code for yesTo is included in the starter code in Ed.

Question Tree File Format
The read and write methods will be interacting with text files containing questions and answers from
20 questions games. These files will follow a standard format.

Page 2 of 6



A single QuestionNode will be represented as a non-empty sequence of line pairs. The first line of the
pair will contain either “Q:” or “A:” to differentiate between questions (branches) and answers (leaves).
The second line of the pair should contain the text for that node (the actual question or answer). You
may assume that the lines containing “Q:” or “A:” will contain exactly that text (case-sensitive) and no
other text. You may also assume the file contains an even number of lines, exactly following this format.
The nodes of the tree will appear in the file following a pre-order traversal (i.e. the overall root of the
tree will be the first node in the file).

You should both assume that any files passed to your read method AND ensure that any files you create
in the write method follow this format. The readTree and writeTree methods from section will be
very helpful in writing your read and write methods for this assessment.

Sample Walk-Throughs
Here is an example question file, the associated tree, and a sample game that might be played with this
tree:

�

Notice that the
file represents
a pre-order
traversal of the
tree.

questions.txt
Q:
Is it an animal?
Q:
Can it fly?
A:
bird
Q:
Does it have a tail?
A:
mouse
A:
spider
Q:
Does it have wheels?
A:
bicycle
Q:
Is it nice?
A:
TA
A:
teacher

yes

yes no

no

yes

yes

yes no

no

no
Is it an animal?

Can it fly?

bird Does it have a tail?

mouse spider

Does it have wheels?

bicycle Is it nice?

TA teacher

Sample game (computer wins)
Welcome to the cse143 question program.

Do you want to read in the previous tree? (y/n)? y

Please think of an object for me to guess.
Is it an animal? (y/n)? n
Does it have wheels? (y/n)? y
Would your object happen to be bicycle? (y/n)? y
Great, I got it right!

Do you want to go again? (y/n)? n

Initially, the computer is not very good at the game, but it improves each time it loses. If the computer
guesses incorrectly, it asks you to give it a new question to help in future games. For example, suppose

Page 3 of 6



in the preceding log that the player was thinking of a car instead. That game might look like this:

Sample game (computer loses)
Welcome to the cse143 question program.

Do you want to read in the previous tree? (y/n)? y

Please think of an object for me to guess.
Is it an animal? (y/n)? n
Does it have wheels? (y/n)? y
Would your object happen to be bicycle? (y/n)? n
What is the name of your object? car
Please give me a yes/no question that
distinguishes between your object
and mine--> Does it get stuck in traffic?
And what is the answer for your object? (y/n)? y

Do you want to go again? (y/n)? n

The computer takes the new information from a lost game and uses it to replace the old incorrect answer
node with a new question node that has the old incorrect answer and new correct answer as its children.
After the preceding game, the computer’s game tree would be the following:

questions.txt
Q:
Is it an animal?
Q:
Can it fly?
A:
bird
Q:
Does it have a tail?
A:
mouse
A:
spider
Q:
Does it have wheels?
Q:
Does it get stuck in traffic?
A:
car
A:
bicycle
Q:
Is it nice?
A:
TA
A:
teacher

yes

yes no

no

yes

yes no

yes

yes no

no

no
Is it an animal?

Can it fly?

bird Does it have a tail?

mouse spider

Does it have wheels?

Does it get stuck in traffic?

car bicycle

Is it nice?

TA teacher

Note that QuestionMain will always read and write to a file named questions.txt. If you want to start
with the tree from spec-questions.txt or big-questions.txt, then you should copy the contents of
those files to a file named questions.txt. Be careful, since the program will write the tree to this file
every time.

Page 4 of 6



Development Strategy
We suggest that you develop the program in the following stages:

(1) Before you begin, you should write “stubs” for the required methods so that you will be able to
test using QuestionMain. Write “dummy” methods that do essentially nothing as placeholders so
QuestionMain will be able to compile and run.

(2) First, you should decide what fields belong in the QuestionNode and QuestionsGame classes. Once
you’ve chosen the fields, you should implement the full QuestionNode class and the constructor
for QuestionsGame.

(3) Next, you should implement write (outputting a tree is easier than reading one). Make sure to
look back at writeTree from section!

(4) Then, you should implement read which reads in a question tree. Make sure to look back at
readTree from section!

(5) Finally, you should implement askQuestions. At this point, you’ll be able to play the game. When
you play, you can add questions one by one and play with your game to check if it’s working.

Code Quality Guidelines
In addition to producing the behavior described above, your code should be well-written and meet all
expectations described in the grading guidelines, Code Quality Guide, and Commenting Guide. For this
assessment, pay particular attention to the following elements:

x = change(x)
An important concept introduced in lecture was called x = change(x). This idea is related to proper
design of recursive methods that manipulate the structure of a binary tree. You should follow this pattern
where necessary when modifying your trees.

For example, at the end of a game lost by the computer, you might be tempted to “morph” what used
to be an answer node of the tree into a question node by directly modifying its fields. This is considered
bad style because question nodes and answer nodes are fundamentally different kinds of data. You can
rearrange where nodes appear in the tree, but you shouldn’t turn a answer node into a question node
just to simplify the programming you need to perform. Instead, you should create or rearrange nodes as
needed. (This is similar to AssassinManager, where you were also rearranging rather than “morphing”
nodes.)

Recursion
For this assessment, you MUST implement your algorithms recursively, and you must not use any loops.
Don’t create special cases in your recursive code if they are not necessary. Avoid repeated logic as much
as possible.

Avoid Redundancy
Create “helper” method(s) to capture repeated code. As long as all extra methods you create are private
(so outside code cannot call them), you can have additional methods in your class beyond those specified
here. If you find that multiple methods in your class do similar things, you should create helper method(s)
to capture the common code.

Data Fields
Properly encapsulate your objects by making data fields in your QuestionGame class private. (Fields in
your QuestionNode class should be public following the pattern from class.) Avoid unnecessary fields;
use fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Page 5 of 6

https://courses.cs.washington.edu/courses/cse143/21su/gradingcriteria.shtml
https://courses.cs.washington.edu/courses/cse143/21su/homework/cse143-style-guide2/javaguide.html
https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf


Exceptions
The specified exceptions must be thrown correctly in the specified cases. Exceptions should be thrown
as soon as possible, and no unnecessary work should be done when an exception is thrown. Exceptions
should be documented in comments, including the type of exception thrown and under what conditions.

Commenting
Each method should have a header comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and pasted from
this spec) and should not include implemenation details.

Running and Submitting
If you believe your behavior is correct, you can submit your work by clicking the "Mark" button in the Ed
assessment. You will see the results of some automated tests along with tentative grades. These grades
are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from class
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will
help you think about what you learned, what you struggled with, and how you can improve next time.
The questions are given in the file QuestionsGameReflection.txt in the Ed assessment; type your
responses directly into that file.

Page 6 of 6

https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21su/lectures.shtml#today
https://courses.cs.washington.edu/courses/cse143/21su/office.shtml
https://edstem.org/us/courses/6204/discussion/
https://courses.cs.washington.edu/courses/cse143/21su/handouts/syllabus.pdf



