
CSE 143: Computer Programming II
Take-home Assessment 2: Guitar Hero

many thanks to Kevin Wayne for this nifty assignment
This assignment will assess your mastery of the following objectives:

• Implement a well-designed Java class to meet a given specification.
• Use a queue (via the Queue<E> interface to implement a provided algorithm.
• Write a class that implements an existing interface.
• Follow prescribed conventions for code quality, documentation, and readability.

There are many support files for this assignment that can be found on the course website. We will be
using two utility classes known as StdAudio and StdDraw that are used in the Princeton intro CS course.
You don’t have to understand the details of these utility classes, but you can read about them here if
you’re interested.

Background: Guitars and Sound
This section describes how guitar strings make sound and how we will represent that in our code to
simulate sound. This section will be confusing and you do not need to fully understand the technical
details of why this works in order to do the assignment. Later sections have details of how to implement
this.

When a guitar string is plucked, the string vibrates and creates sound. The length of the string determines
its fundamental frequency of vibration. We model a guitar string by sampling its displacement (a real
number between -1/2 and +1/2) at N equally spaced points in time, where N equals the sampling rate
(44,100) divided by the fundamental frequency of the string (rounded to the nearest integer). We store
these displacement values in a structure that we will refer to as a ring buffer.

Plucking a string moves it and gives it energy. The excitation of the string can contain energy at any
frequency. We simulate the excitation by filling the ring buffer with white noise. In other words, we set
each of the N sample displacements to a random real number between -1/2 and +1/2.

Simulating Sound
After the string is plucked, the string vibrates. The pluck causes a displacement which spreads wave-like
over time. The Karplus-Strong algorithm simulates this vibration by maintaining a ring buffer of the N
samples: for each step the algorithm deletes the first sample from the ring buffer and adds to the end
of the ring buffer the average of the first two samples, scaled by an energy decay factor of 0.996. More
details on why this simulates sound are at the end of the spec.

Page 1 of 6

Summer 2021
due July 8, 2021 11:59pm

http://introcs.cs.princeton.edu/java/stdlib/


Part 1: GuitarString class
In the first part of the assignment, you will implement a class called GuitarString that models a vibrating
guitar string of a given frequency. The GuitarString object will need to keep track of a ring buffer.
You are to implement the ring buffer as a queue using the Queue<E> interface and the LinkedList<E>
implementation. For this assignment, you are limited to the Queue<E> methods in the section materials
and slide 16 of the stack/queue slides (add, remove, isEmpty, size, and peek). You are not allowed
to use other data structures or other Queue<E> methods to solve this problem.

�

You must
not use any
Queue<E> meth-
ods not listed
here.

Your GuitarString class should include the following constructors:

public GuitarString(double frequency)

Constructs a GuitarString of the given frequency. It creates a ring buffer of the desired capacity
N (sampling rate divided by frequency, rounded to the nearest integer), and initializes it to represent
a guitar string at rest by enqueueing N zeros. The sampling rate is specified by the constant
StdAudio.SAMPLE_RATE. If the frequency is less than or equal to 0 or if the resulting size of the
ring buffer would be less than 2, your method should throw an IllegalArgumentException

public GuitarString(double[] init)

Constructs a GuitarString and initializes the contents of the ring buffer to the values in
the array. If the array has fewer than two elements, your constructor should throw an
IllegalArgumentException. This constructor is used only for testing purposes.

Your GuitarString class should also implement the following public methods:

public void pluck()

This method should replace the N elements in the ring buffer with N random values between -0.5
inclusive and +0.5 exclusive (i.e. −0.5 ≤ value < 0.5).

public void tic()

This method should apply the Karplus-Strong update once (performing one step). It should delete
the sample at the front of the ring buffer and add to the end of the ring buffer the average of the
first two samples, multiplied by the energy decay factor (0.996).
Your class should include a public constant for the energy decay factor.

public double sample()

This method should return the current sample (the value at the front of the ring buffer).

Implementation Guidelines
• You will need to use the Math.round method and cast the result to an int to find the size of

the buffer in the constructor that takes a single double parameter. You can use the following
expression:

(int)(Math.round(StdAudio.SAMPLE_RATE / frequency))

• It is difficult in commenting the GuitarString class to know what constitutes an implementation
detail and what is okay to discuss in client comments. Assume that a client of the GuitarString
class is familiar with the concept of a ring buffer. The fact that we are implementing it as a queue
is an implementation detail. So don’t mention how you implement the ring buffer. But you can

Page 2 of 6

https://edstem.org/us/courses/6204/lessons/14461/slides/73559
https://courses.cs.washington.edu/courses/cse143/21su/lectures/06-28/slides/stacks-queues.pdf


discuss the ring buffer itself and the changes that your methods make to the state of the ring buffer
(e.g., moving values from the front to the back of the ring buffer). You may also assume that the
client is familiar with the Karplus-Strong algorithm.

• At this point, you can also run GuitarHero using GuitarLite and you should hear sound on your
computer! (You will not be able to play sound in Ed, but you can download the files and run them
in jGRASP.) The guitars are explained in the next section.

Interlude: Guitar and GuitarHero
This part of the assignment does not involve writing any code! This part describes the important
supporting files and how to run the program.

In the next part of the assignment, you are going to build on the GuitarString class to write a class that
keeps track of a musical instrument with multiple strings. There could be many possible guitar objects
with different kinds of strings. As a result, we introduce an interface known as Guitar that each guitar
object implements.

Guitar interface
public interface Guitar {

public void playNote(int pitch);
public boolean hasString(char key);
public void pluck(char key);
public double sample();
public void tic();
public int time();

}

The interface allows a client to specify what to play in
one of two ways. A client can specify exactly which
note to play by calling the playNote method passing it
a pitch. Pitch is specified as an integer where the value
0 represents concert-A and all other notes are specified
relative to concert-A using what is known as a chromatic
scale. Not every value of pitch can be played by any
given guitar. If it can’t be played, it is ignored.

Additionally, a client can also specify a character that indicates which note to play by calling the pluck
method. Different guitar objects will have different mappings from characters to notes. The interface
includes a method called hasString that is paired with pluck that lets a client verify that a particular
character has a corresponding string for this guitar. The pluck method has a precondition that the key
is legal for this guitar.

The Guitar interface also has methods for getting the current sound sample (the sum of all samples
from the strings of the guitar), to advance the time forward one “tic”, and determining the current time
(the number of times tic has been called).

We provide a sample class called GuitarLite that implements the Guitar interface. Once you have veri-
fied that your GuitarString class passes the testing program, you can play the GuitarLite instrument.
It has only two strings: “a” and “c”.

To test your guitar, we provide a separate client class called GuitarHero that has a main method (the
initial version constructs a GuitarLite object). GuitarLite does not have a main method.

Part 2: The Guitar37 class
In this second part of the assignment, your task is to write a different implementation of the Guitar
interface known as Guitar37. It will model a guitar with 37 different strings. Unlike GuitarLite which
has a separate field for each of its strings, you will want to use a data structure, specifically an array, to
keep track of the strings in Guitar37.

Keys
The Guitar37 class has a total of 37 notes on the chromatic scale from 110Hz to 880Hz. We will use
the following string to map keys typed by the user to positions in your array of strings. The i-th character
of this string should correspond to the i-th character of your array:

Page 3 of 6



"q2we4r5ty7u8i9op-[=zxdcfvgbnjmk,.;/' "

This use of keyboard characters imitates a piano keyboard, making playing songs a little easier for people
used to a piano keyboard. The white keys are on the qwerty and zxcv rows and the black keys on the
12345 and asdf rows of the keyboard, as in the drawing below.

You are being provided a skeleton version of the Guitar37 class that includes this string defined as a
constant called KEYBOARD. The i-th character of the string corresponds to a frequency of 440×2(i−24)/12,
so that the character “q” is 110Hz, “i” is 220Hz, “v” is 440Hz, and “ ” (space) is 880Hz.

As noted above, a pitch of 0 is supposed to correspond to concert-A, which will be at index 24 for the
Guitar37 object (corresponding to the character “v”). Thus, you can convert from a pitch value to
an index in your string by adding 24 to the pitch value. The table below shows some examples of this
conversion.

Key Pitch
“q” -24
“2” -23
“w” -22
“e” -21
... ...

“v” 0
... ...

“/” 10
“’” 11
“ ” 12

Implementation Guidelines
• In working on this second part of the assignment, you are generalizing the code that you will find

in GuitarLite. Because that instrument has just two strings, it uses two separate fields. Your
instrument has 37 strings, so it uses an array of strings. Each of the operations defined in the
interface needs to be generalized from using two specific strings to using an array of strings. For
example, the sample method returns the sum of the current samples. GuitarLite does this by
adding together two numbers. Your version will have to use a loop to find the sum of all 37 samples.

• The GuitarLite class is not well documented, it does not handle illegal keys, and it does not
correctly implement the time method. Your Guitar37 class should include complete comments.

• The pluck method should throw an IllegalArgumentException if the key is not one of the 37
keys it is designed to play (as noted above, this differs from the playNote method that simply
ignores notes it cant play).

�

Recall that
Strings have
an indexOf
method that
you might find
helpful!

• You will be given a testing program for Guitar37 as well called Test37. This testing code should
be stored in a separate directory from your solution because it includes a custom version
of the GuitarString class and you don’t want to accidentally overwrite your version of the
class. You should copy your Guitar37 class to this folder, run it, and then compare against the
sample output produced using the output comparison tool.

• Once you are done, you can change GuitarHero to use Guitar37 instead of GuitarLite so you
can play the full instrument on your computer! (Ed cannot produce sound, so you’ll need to run
your code in jGRASP to try this.)

Page 4 of 6



Code Quality Guidelines
In addition to producing the behavior described above, your code should be well-written and meet all
expectations described in the grading guidelines, Code Quality Guide, and Commenting Guide. For this
assessment, pay particular attention to the following elements:

Generic Structures and Interfaces
You should always use generic structures. If you make a mistake in specifying type parameters, the Java
compiler may warn you that you have “unchecked or unsafe operations” in your program. You should
also declare fields and variables using the appropriate interfaces when possible. When using Queue’s in
143, you should only use the methods described in class.

Data Fields
Properly encapsulate your objects by making data your fields private. Avoid unnecessary fields; use
fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Exceptions
The specified exceptions must be thrown correctly in the specified cases. Exceptions should be thrown
as soon as possible, and no unnecessary work should be done when an exception is thrown. Exceptions
should be documented in comments, including the type of exception thrown and under what conditions.

Commenting
Each method should have a header comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and pasted from
this spec) and should not include implemenation details.

Running and Submitting
If you believe your behavior is correct, you can submit your work by clicking the "Mark" button in the Ed
assessment. You will see the results of some automated tests along with tentative grades. These grades
are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from class
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 5 of 6

https://courses.cs.washington.edu/courses/cse143/21su/gradingcriteria.shtml
https://courses.cs.washington.edu/courses/cse143/21su/homework/cse143-style-guide2/javaguide.html
https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21su/lectures.shtml#today
https://courses.cs.washington.edu/courses/cse143/21su/office.shtml
https://edstem.org/us/courses/6204/discussion/
https://courses.cs.washington.edu/courses/cse143/21su/handouts/syllabus.pdf


Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will help
you think about what you learned, what you struggled with, and how you can improve next time. The
questions are given in the file GuitarHeroReflection.txt in the Ed assessment; type your responses
directly into that file.

(Optional) Why This Assignment Works
The two primary components that make the Karplus-Strong algorithm work are the ring buffer feedback
mechanism and the averaging operation.

• The ring buffer feedback mechanism: The ring buffer models the medium (a string tied down at
both ends) in which the energy travels back and forth. The length of the ring buffer determines the
fundamental frequency of the resulting sound. Sonically, the feedback mechanism reinforces only
the fundamental frequency and its harmonics (frequencies at integer multiples of the fundamental).
The energy decay factor (.996 in this case) models the slight dissipation in energy as the wave
makes a round trip through the string.

• The averaging operation: The averaging operation serves as a gentle low pass filter (which removes
higher frequencies while allowing lower frequencies to pass, hence the name). Because it is in the
path of the feedback, this has the effect of gradually attenuating the higher harmonics while keeping
the lower ones, which corresponds closely with how actually plucked strings sound.

Page 6 of 6




