
CSE 143: Computer Programming II

This assignment will assess your mastery of the following objectives:

• Implement a well-designed Java class to meet a given specification.
• Maintain proper abstraction between the client and implementation of a class.
• Follow prescribed conventions for code quality, documentation, and readability.

Overview
In this assessment, you will implement a class called LetterInventory that can be used to keep track
of an inventory of letters of the English alphabet. The constructor for the class will take a String as
a parameter and compute how many of each letter are in that String (i.e. how many a’s, how many
b’s, etc.). LetterInventory ignores any character that is not an English letter (such as punctuation or
digits) and treats upper- and lowercase letters as the same.

Your LetterInventory class should include the following constructor:

public LetterInventory(String data)

Constructs an inventory (a count) of the alphabetic letters in the given string, ignoring the case of
letters and ignoring any non-alphabetic characters.

Your class should also include the following public methods: �

You must in-
clude exactly
these method
headers—do
not add or
remove parame-
ters.

public int get(char letter)

Returns a count of how many of this letter (case-insensitive) are in the inventory. If a nonalphabetic
character is passed, your method should throw an IllegalArgumentException.

public void set(char letter, int value)

Sets the count for the given letter (case-insensitive) to the given value. If a nonalphabetic character
is passed or if value is negative, your method should throw an IllegalArgumentException.

public int size()

Returns the sum of all of the counts in this inventory. This operation should be "fast" in that it
should store the size rather than having to compute it each time this method is called.

public boolean isEmpty()

Returns true if this inventory is empty (i.e. all counts are 0). This operation should be "fast" in
that it should not need to examine each of the 26 counts when it is called.

public String toString()

Returns a string representation of the inventory with the letters all in lowercase and in sorted order
and surrounded by square brackets. The number of occurrences of each letter should match its
count in the inventory. For example, an inventory of 4 as, 1 b, 1 l and 1 m would be represented as
"[aaaablm]".

1

Summer 2021
Take-home Assessment 1: Letter Inventory due July 1, 2021 11:59pm



public LetterInventory add(LetterInventory other)

Constructs and returns a new LetterInventory object that represents the sum of this
LetterInventory and the other given LetterInventory. The counts for each letter should be
added together. The two LetterInventory objects being added together (this and other) should
not be changed by this method.

public LetterInventory subtract(LetterInventory other)

Constructs and returns a new LetterInventory object that represents the result of subtracting
the other inventory from this inventory (i.e. subtracting the counts in the other inventory from this
objects counts). If any resulting count would be negative, this method should return null. The
two LetterInventory objects being subtracted (this and other) should not be changed by this
method.

You may also include any additional private helper methods you think will be helpful.

�

Make sure any
helper methods
are declared
private.

As an example, the add method could be called as follows:

LetterInventory inventory1 = new LetterInventory("Sherlock Holmes");
LetterInventory inventory2 = new LetterInventory("Dr. John Watson");
LetterInventory sum = inventory1.add(inventory2);

Here, inventory1 would contain [ceehhkllmoorss], inventory2 would contain [adhjnnoorstw],
and sum would contain [acdeehhhjkllmnnoooorrssstw].

Implementation Guidelines
You should implement this class with an array of 26 counters (one for each letter) along with any other
data fields you find that you need. Remember, though, that we want to minimize the number of data
fields when possible.

Your class should avoid unnecessary inefficiencies. For example, you might be tempted to implement the
add method by calling the toString method or otherwise building a String to pass to the LetterInventory
constructor. But this approach would be inefficient for inventories with large character counts.

You should introduce a class constant for the value 26 to improve readability.

Character operations
It will be helpful to understand certain deatils of the char datatype for this assessment. Many of these
details are explained in section 4.3 of the textbook.

Values of type char have corresponding integer values. There is a character with value 0, a character
with value 1, a character with value 2 and so on. You can compare different values of type char using
less-than and greater-than tests, as in:

if (ch >= 'a') ...

All of the lowercase letters appear grouped together in type char (i.e. ’a’ is followed by ’b’ followed by
’c’, and so on). All of the uppercase letters appear grouped together similarly. Because of this, you can
compute a letter’s "displacement" (or distance) from the letter ’a’ with an expression like the following
(this expression assumes the variable letter is of type char and stores a lowercase letter):

letter - 'a'

2



Going in the other direction, if you know a characters integer equivalent, you can cast the result to char
to get the character. For example, suppose that you want to get the letter that is 8 away from ’a’. You
could do this as follows:

char result = (char) ('a' + 8);

This would assign the variable result the value ’i’. As in these examples, you should write your code
in terms of displacement from a fixed letter like ’a’ rather than finding and including the specific integer
value (e.g. 97) of a character like ’a’.

Hints
Thought it may not seem like it, the ArrayIntList example from lecture provides a good model to use for
implementing LetterInventory. Pay particular attention to the use of fields, avoiding reimplementation
of common functionality, throwing exceptions in error conditions, and documentation/comments.

String and Character
You will likely want to look at the Java String and Character classes for useful methods. (For example,
there is a toLowerCase method in each.) You will have to pay attention to whether each method is static
or not. The String methods are mostly instance methods because strings are objects. The Character
methods are all static because char is a primitive type. For example, if you have a variable called s that
is a String, you can turn it to all lowercase as follows:

s = s.toLowerCase();

This is a call to an instance method on an object, so you put the name of the object variable before the
dot. But char values are not objects and the toLowerCase method in the Character class is a static
method. So if you have a variable called ch that is of type char, you would turn it to all lowercase as
follows:

ch = Character.toLowerCase(ch);

Development Strategy
One of the most important techniques for programmers is to develop code in stages rather than trying to
write it all at once. (The technical term for this is "iterative enhancement" or "stepwise refinement.") It
is also important to be able to test the correctness of your solution at each different stage.

We suggest that you work on your assessment in three stages:
(a) First, work on constructing a LetterInventory and examining its contents. We will implement the

constructor, the size method, the isEmpty method, the get method, and the toString method.
Even within this stage, you should develop the methods slowly. First work on the constructor and
size methods. Then add the isEmpty method, then the get method, then the toString method.

(b) Next, add the set method to the class that allows the client to change the number of occurrences
of an individual letter.

(c) Finally, include the add and subtract methods. We recommend writing the add method first and
making sure it works, then moving on to the subtract method.

3



Code Quality Guidelines
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines, Code Quality Guide, and Commenting Guide. For this assessment,
pay particular attention to the following elements:
Data Fields
Properly encapsulate your objects by making data your fields private. Avoid unnecessary fields; use
fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Exceptions
The specified exceptions must be thrown correctly in the specified cases. Exceptions should be thrown
as soon as possible, and no unnecessary work should be done when an exception is thrown. Exceptions
should be documented in comments, including the type of exception thrown and under what conditions.

Commenting
Each method should have a header comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and pasted from
this spec) and should not include implemenation details.

Running and Submitting
If you believe your behavior is correct, you can submit your work by clicking the "Mark" button in the Ed
assessment. You will see the results of some automated tests along with tentative grades. These grades
are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from class
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will
help you think about what you learned, what you struggled with, and how you can improve next time.
The questions are given in the file LetterInventoryReflection.txt in the Ed assessment; type your
responses directly into that file.

4

https://courses.cs.washington.edu/courses/cse143/21su/gradingcriteria.shtml
https://courses.cs.washington.edu/courses/cse143/21su/homework/cse143-style-guide2/javaguide.html
https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21su/homework/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21su/lectures.shtml#today
https://courses.cs.washington.edu/courses/cse143/21su/office.shtml
https://edstem.org/us/courses/6204/discussion/
https://courses.cs.washington.edu/courses/cse143/21su/handouts/syllabus.pdf



