

CSE143 Lecture Questions for Friday, 4/16/21

Question Answer

At this point, temp is supposed to have an arrow

pointing to the node with 2 in it right? Ah ok! Yeah :-(.

Yes, there should be an arrow pointing from

temp to the node with 2 in it. Too bad we

didn’t have a live lecture where you could

have asked.

I’m still a bit confused with this, for example on

practice it problems, how do we know if we set q = p or

p = q? Is there an easy way to tell or is it dependable?

Got it, I’ll definitely go rewatch that lecture, thanks!

I mentioned in Monday’s lecture that you

can number the different places where a

ListNode reference can be stored and by

comparing the before and after pictures, you

can figure out which need to change. If p is

one of the things that changes, you may

need to set it to q, and vice versa.

To find the spot to insert the sorted number, why would

<= be more efficient? Wouldn’t that imply going right

to the ‘front’ of the list of repeated values and not

stopping as you encounter the first one?

Okay. Thanks!

You’re right...I think I said the wrong thing.

We’d want strictly less than so that it stops

when it finds the first one. The notes have it

right.

You got cut off a bit when talking about a prev, will

you explain more in a future lecture or video?

The lecture notes have a bit more

explanation, but there isn’t a lot more to say.

It can simplify your code to keep track of a

prev and you are allowed to use that

approach if you prefer it.

So some of the cases we covered today are middle, end,

front, and empty. What are some other cases that we

should be looking out for? Ok thanks.

Those are classic cases that can apply in any

situation. Other cases would be relevant

depending on the specific problem you are

solving.

I’m confused on the concept of the short circuit

evaluation. Why would our code fail if the tests in an if

statement are in the wrong order?

In the code we wrote, I originally wrote it

this way:

 if (value <= front.data || front != null) {

 …

 }

That won’t work. Think of what happens

when front is null. We’re testing for it, but

before we get to that test, we see whether

value is less-than-or-equal to front.data.

That causes a NullPointerException because

front is null. So it’s important to put the

other test first so that we only perform the

comparison against value when we know

that front is not null.

28:26

Shouldn’t you have excluded the equal sign in the while

loop to make it more efficient since it would keep going

to the end of the line if you included it?

Sorry to comment on another student’s question. I’m a

bit confused b/c this is contradicting your reasoning to

include an “=” sign. So would you include the equal

sign or not?

thanks!

Yes. Good observation. The notes and

handout #4 have it right.

It’s easy to get confused because we tend to

reason about why a loop should terminate.

We’d want to stop moving forward if we get

to a value that is equal to the one we are

trying to insert. But the while loop has a

test for why to continue, not why to stop.

So the right way to do that is to use strictly

less-than rather than less-than-or-equal in

the while loop test. That way it stops if it

finds a value equal to the one being inserted

rather than skipping forward to get to the

end of the sequence of duplicate values.

If you have more than one constructor, and they’re very

different (ex: one has a for-loop, and the other one just

initializes), does one constructor still have to call the

other one?

Thanks!

We don’t have to have one constructor

calling another. We do it just to eliminate

redundancy. That would only be helpful if

the two constructors are very similar.

Can you make the back of a LinkedList point to the

front of the LinkedList?

Yes, that would form what we call a circular

list. It’s a different approach that is

sometimes used.

Are LinkedLists related to graph theory? That’s what

they remind me of

Graphs are a more general kind of structure

than a linked list. You could think of a

linked list as a very specialized and

constrained graph.

